

Django for Beginners (5th Edition)

Build Modern Web Applications with Python

William S. Vincent

© 2018 - 2024 William S. Vincent

Contents

Foreword 1

Chapter 0: Introduction 3

Why Learn Django? 4

Prerequisites 6

What’s New in Django 5 6

Book Structure 7

Book Layout 8

Advice on Getting Stuck 9

Community 10

Conclusion 10

Chapter 1: Initial Set Up 11

The Command Line 11

Shell Commands 13

Install Python 3 on Windows 16

Install Python 3 on Mac 17

Python Interactive Mode 17

Virtual Environments 18

PyPI (Python Package Index) 21

Install Django 22

First Django Project 22

The Development Server 24

Text Editors 26

VSCode Configurations 27

CONTENTS

Install Git 28

Conclusion 30

Chapter 2: Hello, World Website 31

How the Internet Works 31

How Web Frameworks Work 33

Django Architecture 34

Model-View-Controller vs Model-View-Template 35

Initial Set Up 36

Migrations 40

Create An App 42

Your First View 44

URL Dispatcher 45

Git 48

Conclusion 51

Chapter 3: Personal Website 52

Initial Set Up 52

Homepage 54

Function-Based View About Page 56

Templates 57

URL Dispatcher 58

The Django Template Language 59

Template Context 60

Tests 63

Git and GitHub 65

Conclusion 67

Chapter 4: Company Website 68

Initial Set Up 68

Project-Level Templates 70

Function-Based View and URL 71

Template Context, Tags, and Filters 73

CONTENTS

Class-Based Views and Generic Class-Based Views 76

TemplateView 77

get_context_data() 79

Template Inheritance 81

Named URLs 83

Tests 85

Git and GitHub 89

Conclusion 90

Chapter 5: Message Board Website 91

Initial Set Up 91

Databases 94

Django’s ORM 95

Database Model 96

Activating Models 97

Django Admin 98

Function-Based View 104

Templates and URLs 105

ListView 108

Initial Commit 109

Tests 110

GitHub 115

Conclusion 116

Chapter 6: Blog Website 117

Initial Set Up 117

Blog Post Models 119

Primary Keys and Foreign Keys 121

Admin 125

Views 129

URLs 129

Templates 130

Static Files 133

CONTENTS

Individual Blog Pages 138

get_absolute_url() 142

Tests 144

Git 149

Conclusion 149

Chapter 7: Forms 150

ListView and DetailView 150

Mixins 154

CreateView 155

UpdateView 160

DeleteView 165

Tests 169

Conclusion 171

Chapter 8: User Accounts 172

Log In 172

Updated Homepage 175

Log Out Link 176

Sign Up 179

Sign Up Link 183

GitHub 184

Conclusion 185

Chapter 9: Newspaper Project 186

Initial Set Up 186

Git 187

User Profile vs Custom User Model 188

AbstractUser 189

Forms 191

Superuser 194

Tests 197

Git 199

CONTENTS

Conclusion 199

Chapter 10: User Authentication 201

Templates 201

URLs 204

Admin 208

Tests 213

Git 215

Conclusion 215

Chapter 11: Bootstrap 216

Pages App 216

Tests 218

Testing Philosophy 220

Bootstrap 220

Signup Form 225

Git and requirements.txt 232

Conclusion 233

Chapter 12: Password Change and Reset 234

Password Change 234

Customizing Password Change 235

Password Reset 237

Custom Templates 241

Try It Out 244

Git 246

Conclusion 246

Chapter 13: Articles App 247

Articles App 247

URLs and Views 253

Detail/Edit/Delete 257

Create Page 263

CONTENTS

Additional Links 265

Git 268

Conclusion 268

Chapter 14: Permissions and Authorization 269

Improved CreateView 269

Authorizations 270

Mixins 272

LoginRequiredMixin 274

UpdateView and DeleteView 276

Template Logic 278

Git 280

Conclusion 281

Chapter 15: Comments 282

Model 282

Admin 284

Template 291

Comment Form 294

Comment View 295

Comment Template 296

Comment Post View 298

New Comment Link 303

Git 305

Conclusion 305

Chapter 16: Deployment 306

Hosting Options 306

Web Servers and WSGI/ASGI Servers 307

Deployment Checklist 309

Static Files 309

Middleware 313

Environment Variables 314

CONTENTS

DEBUG and ALLOWED_HOSTS 315

SECRET_KEY, and CSRF_TRUSTED_ORIGINS 318

DATABASES 320

Gunicorn and Procfile 322

requirements.txt 323

Heroku Setup 324

Deploy with Heroku 326

Additional Security Steps 336

Conclusion 337

Chapter 17: Conclusion 338

Learning Resources 338

3rd Party Packages 339

Python Books 339

Feedback 340

Foreword

Django bills itself as “the web framework for perfectionists with deadlines,” an ode to its origins

as a newspaper content management system (CMS) and its overriding approach of balancing

features with practicality. From the beginning, Django was created for real-world developers

who wanted a fast, elegant, and powerful way to build websites. It is hard to appreciate, almost

twenty years after its first release, just how different theWorldWideWeb landscape is from back

then.

I first encountered Django in the early 2000s, shifting from a planned academic career to a

self-taught web developer. Back then, Django wasn’t the Django we know today, with a vibrant

community, regular community-run conferences, fantastic documentation, thousands of third-

party packages, and all the rest. Instead, it was a plucky upstart released by early twenty-

something kids from a Kansas newspaper. But it was immediately apparent that this was what

I was looking for! For one thing, Django was written in Python rather than the PHP most

web developers (myself included) used at the time. Python is a wonderfully readable, rich, and

powerful programming language that has now won over much of the programming world, but at

the time, it, too, was something of an upstart. Django also emphasized a “batteries-included”

approach similar to Python, providing built-in solutions for most tasks while still allowing

customization.

As my work with Django deepened, I became a co-maintainer of Django REST Framework and

several other packages in the ecosystem. In 2018, I eventually became a Django Fellow. The

Fellowship program is a paid position sponsored by the Django Software Foundation, the non-

profit that maintains Django. A Fellow works on Django, managing releases, reviewing pull

requests, and doing all the unglamorous but necessary things for an open-source project to

succeed.

It was at a DjangoCon US event in 2018 that I first met the author of this book, Will Vincent. He

gave a talk on Django API Authentication, and we started talking. We both agreed that a Django-

focused podcast was needed and launched the first episode of Django Chat in early 2019; today,

Foreword 2

five years and 160+ episodes later, it is still going strong. During that time, Will was elected to

the Board of the Django Software Foundation in 2020 and served as Treasurer for three years

(2020-2023). Looking back now, we’re old hands, we’re veterans.

The first edition of this book came out in 2018 and immediately filled a void. As a Django Fellow, I

was routinely asked for recommendations on how to learn Django, and Django for Beginners has

long been my answer. It adopts Will’s typically patient approach in explaining how things work

while including practical examples of how to quickly build Django websites. Although you start

building a “Hello, World” app, by the end of the book, you’ve written multiple real-world Django

projects from scratch, layering on new concepts and techniques each time. And don’t be fooled

by the “Beginners” in the title; this book covers the fundamentals and essential areas such as

testing, deployment, environment variables, security, andmore. It is full of best-practice wisdom

that jump-starts anyone wanting to learn more about Django, whatever their background.

I am thrilled for you to embark on your journey with Django. As your guide, this book will open

your eyes to themyriadways Django can revolutionize your web development experience. I hope

your journey is as rewarding for you as it has been for countless others. Django for Beginners is

the perfect gateway to the framework, the ecosystem around it, and our wonderful community.

Have fun, and welcome aboard!

– Dr. Carlton Gibson

Django Fellow (2018-2023) and core contributor / Co-maintainer Django REST Framework

noumenal.es

Chapter 0: Introduction

Welcome to Django for Beginners, a project-based approach to learning web development with

Django1, a free and open-source web framework written in Python. Django is used by everyone,

from students and startup founders to the largest websites in the world, including Instagram,

YouTube, Reddit, Netflix, Dropbox, and Spotify. Its “batteries-included” approach provides all the

built-in functionality you need to create powerful, real-world web applications quickly, hence its

tagline, “The web framework for perfectionists on a deadline.”

Django’s abundance of features can feel overwhelming to newcomers. It doesn’t help that the

official polls tutorial2 and the official documentation3 are targeted at intermediate-to-advanced

level web developers, not beginners.

The good news is that, as a “loosely coupled” framework, Django’s components work indepen-

dently or together, allowing for a high degree of modularity. In other words, you only have to

use (and learn) what you need. Even professional developers with years of experience will only

utilize some of what the framework offers; it’s simply too big and too expansive for all its features

to fit into a single project.

You will find, though, that the same patterns and tasks arise in almost every Django website:

create and structure a new project, connect to and query a database, add logic, perform CRUD

(Create-Read-Update-Delete) operations, handle user accounts and forms, and so on. Django

does not have to feel overwhelming; indeed, it shouldn’t! There is a built-in solution for almost

every conceivable use case: that’s what the documentation is for! But no one, even the original

creators and core developers who wrote much of the documentation, can keep it all in their

heads. You shouldn’t attempt to either!

This book started as my personal notes on building Django projects. It took a long time before

I had internalized and felt comfortable with Django’s structure. The best way to solidify my

1https://djangoproject.com
2https://docs.djangoproject.com/en/5.0/intro/tutorial01/
3https://djangoproject.com

https://djangoproject.com/
https://docs.djangoproject.com/en/5.0/intro/tutorial01/
https://djangoproject.com/
https://djangoproject.com/
https://docs.djangoproject.com/en/5.0/intro/tutorial01/
https://djangoproject.com/

Chapter 0: Introduction 4

understanding was to create progressively more complex projects focused on a new concept

or skill. Eventually, I published my notes as a series of blog posts and, based on their popularity,

created this book, now in its fifth edition.

In this book, you will learn how to build, test, and deploy six progressively more complex web

applications. We will start with a “Hello, World” application and conclude with a real-world

Newspaper website that ties together all the fundamental concepts and techniques covered in

the book, includingmodels, views, URLs, templates, forms, user accounts, permissions, andmore.

By the end of this book, you should feel confident creating Django projects from scratch and have

the background to fill in any knowledge gaps with more advanced educational resources.

Why Learn Django?

Django was initially created in the fall of 2003 at the Lawrence Journal-World newspaper and

named after the famous jazz guitarist Django Reinhardt; it was released as a free, open-source

project in July 2005. That makes it almost twenty years old now, quite mature in software terms,

but it has continued to thrive and is arguably more vibrant today than ever before. Each week,

double-digit new code submissions are accepted into the framework, monthly security and

bugfix releases, and a major new release every eight months. A vast ecosystem of third-party

packages4 provides additional functionality beyond the core framework.

Django is written in the wonderfully readable yet powerful Python programming language,

arguably the most popular language in the world today. Python is the default choice in most

undergraduate computer science curriculums, the dominant language for data science and arti-

ficial intelligence, and widely used in scientific research. Its ease of use and broad applicability

make Python suitable for almost any task.

Django inherited Python’s “batteries-included” approach and includes a wide range of built-in

features for routine tasks in web development, including:

• ORM (Object-Relational Mapper): write Python rather than raw SQL for creating and

querying database tables

4https://djangopackages.org/

https://djangopackages.org/
https://djangopackages.org/
https://djangopackages.org/

Chapter 0: Introduction 5

• Authentication: a full-featured and secure system for user accounts, groups, permissions,

and cookie-based user sessions

• Templating Engine: a simple syntax for adding variables and logic to create dynamicHTML

• Forms: a powerful form library that handles rendering and validation

• URL Routing: a clean, elegant URL schema that is easy to maintain and reason about

• Admin Interface: a visual way to interact with all website data, including users and

database tables

• Internationalization: multilingual support plus locale-specific formatting of dates, time,

numbers, and time zones

• Security: protection against SQL injection, cross-site scripting, cross-site request forgery,

clickjacking, and remote code execution

This approach allows web developers to focus on what makes a web application unique rather

than reinventing the wheel every time. Millions of users have already used and tested the

necessary code, so you know it will be secure and performant.

In contrast, someweb frameworks like Flask5 adopt amicroframework approach of providing only

the bare minimum required for a simple webpage. Flask is far more lightweight than Django and

allowsmaximum flexibility; however, this comes at a cost to the developer. Building a simple Flask

website requires adding a dozen or more third-party packages, which may or may not be up-to-

date, secure, or reliable. The lack of guardrails also means Flask’s project structure varies widely,

whichmakes it difficult tomaintain best practiceswhenmoving between different projects. Flask

is a good choice for a web framework; it just has different strengths and weaknesses compared

to a full-featured option like Django.

There is a saying among long-time Django developers, “Come for the framework, stay for the

community.” And it is true! Django has an unusually warm andwelcoming community for all levels

of programmer, represented in annual volunteer-run DjangoCon conferences across multiple

continents, an active forum6 for discussion, and regular meetups in major cities. Unlike other

open-source projects run by companies or individuals, Django is organized as a non-profit

organization via the Django Software Foundation7, whose goal is to promote, support, and

advance the web framework. Its Board of Directors is voted on annually by the community.
5https://flask.palletsprojects.com/en/3.0.x/
6https://forum.djangoproject.com
7https://www.djangoproject.com/foundation/

https://flask.palletsprojects.com/en/3.0.x/
https://forum.djangoproject.com/
https://www.djangoproject.com/foundation/
https://flask.palletsprojects.com/en/3.0.x/
https://forum.djangoproject.com/
https://www.djangoproject.com/foundation/

Chapter 0: Introduction 6

Millions of programmers have already used Django to build their websites, and millions more

turn to it each year because it doesn’t make sense to reinvent the wheel when you can rely on a

large community of brilliant developers who have already done the hard work for us.

Prerequisites

You don’t need previous Python or web development experience to complete this book. Even

someone new to programming and web development can follow along and feel the magic of

writing web applications from scratch. However, familiarity with basic Python, HTML, and CSS

will go a long way toward solidifying your understanding of core concepts. There are references

throughout the book whenever Django differs from other web frameworks; the most obvious

example is that Django adopts an MVT (Model-View-Template) approach slightly different from

the dominant MVC (Model-View-Controller) pattern. Wewill cover these differences thoroughly

once we start writing code.

What’s New in Django 5

Django 5.0 was released in December 2023 and has official support for Python 3.10, 3.11, and

3.12. It’s important to note that Django’s versioning policy8 is time-based rather than feature-

based. Roughly every eight months, a new feature release occurs, along with monthly bug fixes

and security patches as needed. Django also follows the pattern of .0, .1, .2, and then back to

.0 for feature releases, meaning you can expect Django 5.1 in August 2024, Django 5.2 in April

2025, Django 6.0 in December 2025, and so on. Django has such a large and active community of

contributors that the decision was made years ago to focus on regular rollouts rather than wait

for specific features to be completed.

Specific releases (those that end in .2, like Django 5.2 and 6.2) are designated as long-term

support (LTS) releases and receive security and data loss fixes applied for a guaranteed period,

typically three years. This policy is designed for larger companies struggling to keep up with

Django’s rapid release schedule. Still, the best security policy is to be on the latest possible release

rather than an LTS version if you can.

8https://www.djangoproject.com/download/#supported-versions

https://www.djangoproject.com/download/#supported-versions
https://www.djangoproject.com/download/#supported-versions

Chapter 0: Introduction 7

So, what’s new in Django 5.0? The most significant change is form field rendering, which is now

greatly simplified. Facet filters were added to the admin to allow for easier UI filtering, database-

computed default values are now possible, and there is official support for Python 3.10, 3.11, and

3.12. Django has gradually added asynchronous support over the years, and this release adds a

new async function to the authmodule that controls user authentication. But perhaps the most

noticeable change for developers upgrading to the latest edition is that logout links must now

be POST rather than GET requests.

Django is a mature web framework that strives to remain stable yet advance alongside the

modern web. If you find yourself on a project with an older version of Django, there are detailed

instructions9 for updating to the latest version.

Book Structure

The book begins by demonstrating how to configure a local development environment for

Windows and macOS in Chapter 1. We then learn about the powerful command line, Git,

configuring text editors, and how to install the latest versions of Python and Django.

In Chapter 2, we review how websites and web frameworks work before diving into an overview

of Django architecture. From there we build our first project, a minimal Hello, World website,

while learning about views, URL, and apps. We even save our work with Git and upload a copy to

a remote code repository on GitHub.

In Chapter 3, wemake, test, and deploy a PersonalWebsite that introduces function-based views,

templates, and the Django Templating Language. We explore the template context and write our

first tests using Django’s built-in testing framework.

Class-based views, template inheritance, and more advanced testing patterns are covered in

Chapter 4, where we build a Company Website. This is the final project before we turn to Django

models and database-backed websites.

We build our first database-backed project in Chapter 5, a Message Board website. Django

provides a powerful ORM (Object-Relational Mapper) that abstracts away the need to write raw

SQL ourselves. Instead, we can write Python in a models.py file that the ORM automatically

9https://docs.djangoproject.com/en/5.0/howto/upgrade-version/

https://docs.djangoproject.com/en/5.0/howto/upgrade-version/
https://docs.djangoproject.com/en/5.0/howto/upgrade-version/
https://docs.djangoproject.com/en/5.0/howto/upgrade-version/

Chapter 0: Introduction 8

translates into the correct SQL for multiple database backends (PostgreSQL, MySQL, SQLite,

MariaDB, and Oracle). We’ll explore the built-in admin app, which provides a graphical way to

interact with data. Of course, we also write tests for all our code and store a remote copy on

GitHub.

In Chapters 6-8, we’re ready for a Blog website that implements CRUD (Create-Read-Update-

Delete) functionality. Using first function-based views and then switching over to Django’s

generic class-based views, we only have to write a small amount of actual code for this. Then,

we’ll add forms and integrate Django’s built-in user authentication system for signup, login, and

logout functionality.

The remainder of the book is dedicated to building and deploying a production-readyNewspaper

website. Chapter 9 demonstrates setting up a new project using a custom user model and

appropriate tests. Chapter 10 covers a complete user authentication flow of login, logout, and

signup, while Chapter 11 adds Bootstrap for enhanced CSS styling. Chapter 12 implements

password reset and change via email and in Chapters 13-15, we add articles, comments, proper

permissions, and authorizations. Finally, in Chapter 16 production-ready deployment is covered.

The Conclusion provides an overview of the central concepts introduced in the book and a list

of recommended resources for further learning. While it may be tempting to skip around in this

book, I recommend reading the chapters in order. Each chapter introduces a new concept and

builds upon past teachings.

By the end of this book, you’ll have a solid understanding of Django, the ability to build your

apps, and the background required to fully take advantage of additional resources for learning

intermediate and advanced Django techniques.

Book Layout

There are many code examples in this book styled as follows:

Chapter 0: Introduction 9

Code

This is Python code
print("Hello, World!")

For brevity, we will use three dots, ..., when the existing code has not changed. The section of

code that has changed is highlighted using a # new comment.

Code

def make_my_website:
...
print("All done!") # new

Advice on Getting Stuck

Getting stuck on an issue happens to every programmer at every level. The only thing that

changes as you becomemore experienced in your career is the difficulty of tackling the question.

Part of learning how to be a better developer is accepting this frustration, finding help, asking

targeted questions, and determining when the best course of action is to step away from the

computer and walk around the block to clear your head.

The good news is that whatever error you are having, you are likely not the first! Copy and paste

your error into a search engine like Google or DuckDuckGo; it will typically bring up something

from StackOverflow or a personal blog detailing the same issue. Experienced programmers often

joke that their ability to Google more quickly for an answer is the only thing that separates them

from junior programmers. There is some truth to this.

Of course, you can only trust some of what you read online. With experience, you will develop

the context to see how the pieces of Django and code fit together.

What do you do if you are stuck on something in this book? First, carefully check your code

against what is in the book. If you’re still stuck, you can look at the official source code, which

is available on GitHub10. A common error is subtle white spacing differences that are almost

10https://github.com/wsvincent/djangoforbeginners

https://github.com/wsvincent/djangoforbeginners
https://github.com/wsvincent/djangoforbeginners

Chapter 0: Introduction 10

impossible to detect to the naked eye. You can try copying and pasting the official source code

if you suspect this might be the issue.

The next step is to walk away from the computer or even sleep on the problem. It’s incredible

what a small amount of rest and distance will do to your mind when solving problems.

There are two fantastic online resourceswhere theDjango community gathers to ask and answer

questions. The first is the official Django Forum11, and the second is the Django Users Google

Group12. Each is an excellent next step if you need additional help.

Community

The success of Django owes as much to its community as it does the technological achievement

of the framework itself. “Come for the framework, stay for the community” is a common saying

among Django developers. It extends to the technical development of Django, which happens

online via the django-developers13, the non-profit Django Software Foundation14 that oversees

Django, annual DjangoCon conferences, and local meetups where developers gather to share

knowledge and insights.

Regardless of your level of technical expertise, becoming involved in Django is a great way to

learn, meet other developers, and enhance your reputation.

Conclusion

In the next chapter, you’ll learn how to properly set up your computer and create your first

Django project. Let’s begin!

11https://forum.djangoproject.com/
12https://groups.google.com/g/django-users
13https://docs.djangoproject.com/en/dev/internals/mailing-lists/#django-developers-mailing-list
14https://www.djangoproject.com/foundation/

https://forum.djangoproject.com/
https://groups.google.com/g/django-users
https://groups.google.com/g/django-users
https://docs.djangoproject.com/en/dev/internals/mailing-lists/#django-developers-mailing-list
https://www.djangoproject.com/foundation/
https://forum.djangoproject.com/
https://groups.google.com/g/django-users
https://docs.djangoproject.com/en/dev/internals/mailing-lists/#django-developers-mailing-list
https://www.djangoproject.com/foundation/

Chapter 1: Initial Set Up

This chapter focuses on configuring your Windows or macOS computer to work on Django

projects. You are probably eager to dive right in, but setting up your computer correctly now

will save you a lot of pain and heartache later.

You are probably eager to dive right in and start using Django, but configuring your computer

now for Django development is a one-time task that will pay many dividends in the future. It is

important to be comfortable with the command line and shell commands, understand how to

use virtual environments, install the latest version of Python, use a text editor, and work with Git

for version control. By the end of this chapter, you will have created your first Django project

from scratch and be able to create and modify new Django projects with just a few keystrokes.

The Command Line

The command line is a text-only interface that harkens back to the original days of computing.

If you have ever seen a television show or movie where a hacker is furiously typing into a black

window, that’s the command line. It is an alternative to the mouse or finger-based graphical user

interface familiar to most computer users. Regular computer users will never need to use the

command line. Still, for software developers, it is a vital and regularly used tool necessary to

execute programs, install software, use Git for version control, and connect to servers in the

cloud. With practice, most developers find that the command line is a faster and more powerful

way to navigate and control a computer.

Given its minimal user interface–just a blank screen and a blinking cursor–the command line

is intimidating to newcomers. There is often no feedback after a command has run, and it is

possible to wipe the contents of an entire computer with a single command if you’re not careful:

no warning will pop up! As a result, use the command line with caution. Refrain from mindlessly

copying and posting commands you find online; rely only on trusted resources.

Chapter 1: Initial Set Up 12

In everyday usage, multiple terms refer to the command line: Command Line Interface (CLI),

console, terminal, shell, or prompt. Technically speaking, the terminal is the program that opens

up a new window to access the command line, a console is a text-based application, and the

shell is the program that runs commands on the underlying operating system. The prompt is

where commands are typed and run. It is easy to be confused by these terms initially, but they

all essentially mean the same thing: the command line is where we run and execute text-only

commands on our computer.

The built-in terminal and shell on Windows are both called PowerShell. To access it, locate the

taskbar next to the Windows button on the bottom of the screen and type in “PowerShell” to

launch the app. It will open a new window with a dark blue background and a blinking cursor

after the > prompt. Here is how it looks on my computer.

Shell

PS C:\Windows\System32>

Before the prompt is PS, which refers to PowerShell, the initial C directory of the Windows

operating system, followed by the Windows directory and, within it, the System32 directory. Don’t

worry about what comes to the left of the > prompt at this point: it varies depending on each

computer and can be customized later. The shorter prompt of > will be used going forward for

Windows.

At this point, we need to navigate to the users directory, so enter the command cd \users

followed by the Enter key to change directories (cd) into users.

Shell

PS C:\Windows\System32> cd \users
PS C:\Users>

OnmacOS, the built-in terminal is called Terminal. Open it via the Spotlight app: simultaneously

press the Command and Space bar keys and then type in “terminal.” Alternatively, open a new

Finder window, navigate to the Applications directory, scroll down to open theUtilities directory,

and double-click the Terminal application, which opens a new screen with a white background

by default and a blinking cursor after the % prompt. Don’t worry about what comes to the left of

the % prompt. It varies by computer and can be customized later on.

Chapter 1: Initial Set Up 13

Shell

Wills-Macbook-Pro:~ wsv%

Since 2019, the default shell for macOS has been zsh15, which uses the % prompt. If you see

$ as your prompt, you are using the previous default macOS shell, Bash16. While most of

the commands in this book will work interchangeably, if your computer still uses Bash, it is

recommended to look online at how to change to zsh via System Preferences.

Note: In this book, we will use the universal $ Unix prompt for all shell commands rather than

alternating between > on Windows and % on macOS.

Shell Commands

There are many available shell commands, but developers generally rely on half a dozen

commands for day-to-day use and look up more complicated commands as needed.

In most cases, Windows (PowerShell) and macOS commands are similar. For example, the

command whoami returns the computer name/username on Windows and the username on

macOS. As with all shell commands, type the command itself followed by the return key. Note

that the # symbol represents a comment not executed on the command line.

Shell

Windows
$ whoami
wsv2024/wsv

macOS
$ whoami
wsv

Navigating within the computer filesystem is a frequent command-line task. On Windows and

macOS, the command pwd (print working directory) outputs the current location within the file

system.

15https://en.wikipedia.org/wiki/Z_shell
16https://en.wikipedia.org/wiki/Bash_(Unix_shell)

https://en.wikipedia.org/wiki/Z_shell
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/Z_shell
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

Chapter 1: Initial Set Up 14

Shell

Windows
$ pwd

Path

C:\Users

macOS
$ pwd
/Users/wsv

You can save your Django code anywhere, but we will place our code in the desktop directory for

convenience. The command cd (change directory) followed by the intended location works on

both systems. On Windows, you first need to change directories into your user directory, which

is represented by the whoami command. On my computer, it is wsv, but yours will be different.

Shell

Windows
$ cd wsv
$ cd onedrive\desktop
$ pwd

Path

C:\Users\wsv\onedrive\desktop

macOS
$ cd desktop
$ pwd
/Users/wsv/desktop

Tip: The > key on Windows and tab on macOS will autocomplete a command, so if you type cd

d and then hit > or tab, the rest of the name will be filled in automatically.

To create a new directory, use the command mkdir followed by the name. We will create a code

directory on the desktop and a new directory named ch1-setup within it.

Chapter 1: Initial Set Up 15

Shell

Windows
$ mkdir code
$ cd code
$ mkdir ch1-setup
$ cd ch1-setup

macOS
$ mkdir code
$ cd code
$ mkdir ch1-setup
$ cd ch1-setup

You can check that it has been created by looking on your desktop or running the command pwd.

Shell

Windows
$ pwd

Path

C:\Users\wsv\onedrive\desktop\code\ch1-setup

macOS
$ pwd
/Users/wsv/desktop/code/ch1-setup

Tip: The clear command will clear the terminal of past commands and outputs, so you have a

clean slate. As we’ve discussed, the tab command autocompletes the line. The↑ and ↓ keys cycle

through previous commands to save yourself from typing the same thing over and over again.

To exit, you could close the terminal with your mouse, but the hacker way is to use the

shell command exit instead, which works by default on Windows; on macOS, the Terminal

preferences need to be changed. Click Terminal at the top of the screen, then Preferences from

the dropdown menu. Click on Profiles in the top menu and then Shell from the list below.

There is a radio button for “When the shell exits.” Select “Close the window.”

Chapter 1: Initial Set Up 16

Shell

$ exit

With practice, the command line is a far more efficient way to navigate and operate your

computer than a mouse. You don’t need to be a command line expert to complete this book:

I will provide the exact instructions to run each time. But if you are curious, a complete list of

shell commands for each operating system is available at ss64.com.

Install Python 3 on Windows

On Windows, Microsoft hosts a community release of Python 3 in the Microsoft Store. In the

search bar at the bottom of your screen, type in “python” and select the result for Python 3.12

on the Microsoft Store. Click on the blue “Get” button to download it.

To confirm that Python is installed correctly, open a new Terminal window with PowerShell and

type python --version.

Shell

$ python --version
Python 3.12.3

The result should be at least Python 3.12. Then, type python to open the Python interpreter from

the command-line shell.

Shell

$ python
Python 3.12.3 (v3.12.3:f6650f9ad7, Apr 9 2024, 08:18:47)
[MSC v.1937 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

You can exit the Python interpreter by typing either exit() or Ctrl-Z plus Return.

Chapter 1: Initial Set Up 17

Install Python 3 on Mac

On Mac, the official installer on the Python website is the best approach. In a new browser

window, go to the Python downloads page17 and click on the button underneath the text

“Download the latest version for Mac OS X.” As of this writing, that is Python 3.12. The package

will be in your Downloads directory: double-click on it to launch the Python Installer, and follow

the prompts.

To confirm the download was successful, open a new Terminal window and type python3

--version.

Shell

$ python3 --version
Python 3.12.3

Then, type python3 to open the Python interpreter.

Shell

$ python3
Python 3.12.3 (v3.12.3:f6650f9ad7, Apr 9 2024, 08:18:47)
[Clang 13.0.0 (clang-1300.0.29.30)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

You can exit the Python interpreter by typing either exit() or Ctrl-D plus Return.

Python Interactive Mode

From the command line, type either python on Windows or python3 on macOS to bring up the

Python Interpreter, also known as Python Interactive mode. The new prompt of >>> indicates

that you are now inside Python itself and not the command line. If you try any previous shell

commands we ran–cd, ls, mkdir–they will raise errors. What will work is actual Python code.

For example, try out both 1 + 1 and print("Hello Python!"). Press the Enter or Return keys

after each command to run them.
17https://www.python.org/downloads/

https://www.python.org/downloads/
https://www.python.org/downloads/

Chapter 1: Initial Set Up 18

Shell

>>> 1 + 1
2
>>> print("Hello Python!")
Hello Python!

Python’s interactive mode is a great way to save time if you want to try out a short bit of code.

However, it has several limitations: You can’t save your work in a file, and writing longer code

snippets is cumbersome. As a result, we will spend most of our time writing Python and Django

in files using a text editor.

To exit Python from the command line, type either exit() and the Enter key or use Ctrl + z on

Windows or Ctrl + d on macOS.

Virtual Environments

Installing the latest versions of Python and Django is the correct approach for any new project.

However, in the real world, it is common for existing projects to rely on older versions of

each. Consider the following situation: Project A uses Django 4.0, but Project B uses Django 5.0.

By default, Python and Django are installed globally on a computer: installing and reinstalling

different versions every time you want to switch between projects is quite a pain.

Fortunately, there is a straightforward solution. Virtual environments allow you to create and

manage separate environments for each Python project on the same computer. You should use

a dedicated virtual environment for each new Python and Django project.

There are several ways to implement virtual environments, but the simplest is with the venv18

module already installed as part of the Python 3 standard library. To try it out, navigate to your

desktop’s existing ch1-setup directory.

18https://docs.python.org/3/library/venv.html

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

Chapter 1: Initial Set Up 19

Shell

Windows
$ cd onedrive\desktop\code\ch1-setup

macOS
$ cd ~/desktop/code/ch1-setup

To create a virtual environmentwithin this newdirectory, use the format python -m venv <name_-

of_env> onWindows or python3 -m venv <name_of_env> onmacOS. The -m part of this command

is known as a flag, which is a convention to indicate the user is requesting non-default behavior.

The format is usually - and then a letter or combination of letters. The -m flag19 is necessary

since venv is a module name. It is up to the developer to choose a proper environment name, but

a common choice is to call it .venv, as we do here.

Shell

Windows
$ python -m venv .venv

macOS
$ python3 -m venv .venv

OnWindows, the command lswill display the .venv directory in our directory, but it will appear

empty on macOS. The .venv directory is there; it’s just that it is “hidden” due to the period, .,

that precedes the name. Hidden files and directories are a way for developers to indicate that

the contents are important and should be treated differently than regular files. To view it, try ls

-la, which shows all directories and files, even hidden ones.

19https://docs.python.org/3/using/cmdline.html#cmdoption-m

https://docs.python.org/3/using/cmdline.html#cmdoption-m
https://docs.python.org/3/using/cmdline.html#cmdoption-m

Chapter 1: Initial Set Up 20

Shell

$ ls -la
total 0
drwxr-xr-x 3 wsv staff 96 Dec 12 11:10 .
drwxr-xr-x 3 wsv staff 96 Dec 12 11:10 ..
drwxr-xr-x 6 wsv staff 192 Dec 12 11:10 .venv

You will see that .venv is there and can be accessed via cd if desired. The directory also contains

a copy of the Python interpreter and a few management scripts, but you will not need to use

them directly in this book.

Once created, a virtual environment must be activated. On Windows, there is a one-time

additional step of setting an Execution Policy to enable running scripts. The Execution Policy

tells Windows, I know what I’m doing here! The Python docs recommend allowing scripts for

the CurrentUser only, which is what we will do. On macOS, there are no similar restrictions on

scripts, so it is possible to run source .venv/bin/activate directly.

Here is what the complete commands look like to create and activate a new virtual environment

called .venv:

Shell

Windows
$ python -m venv .venv
$ Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser
$.venv\Scripts\Activate.ps1
(.venv) $

macOS
$ python3 -m venv .venv
$ source .venv/bin/activate
(.venv) $

The shell prompt now has the environment name (.venv) prefixed, which indicates that the

virtual environment is active. Any future changes to Python packages (such as updating existing

ones or installing new ones) will occur only within our active virtual environment.

To deactivate and leave a virtual environment, type deactivate.

Chapter 1: Initial Set Up 21

Shell

(.venv) $ deactivate
$

The shell prompt no longer has the virtual environment name prefixed, which means the session

is now back to normal.

PyPI (Python Package Index)

PyPI (Python Package Index)20 is the central location for all Python projects. You can see Django

is there21 along with every other Python package we will use in this book.

Wewill use pip22, themost popular package installer, to install Python packages. It already comes

included with Python 3, but to ensure we are on the latest version of pip, let’s take a moment to

update it. Here is the command to run:

Shell

$ python -m pip install --upgrade pip

This commandwill install and upgrade (if needed) the latest version of pip. Notice that we are not

in a virtual environment, so this version of pip will be installed globally on our local computer.

Why do we use python -m pip instead of just pip for this command? The latter does work, but

it can cause some issues. Using python with the -m flag ensures that the intended version of

Python is in use, even if you have multiple versions of Python installed on your computer. For

example, if you have Python 3.7 and 3.12 installed on your computer, it is possible for pip install

to use Python 3.7 at one point but Python 3.12 later: not desired behavior. Brett Cannon23 has a

much fuller explanation if you are curious about the underlying reasons why this is the case.

20https://pypi.org/
21https://pypi.org/project/Django/
22https://pypi.org/project/pip/
23https://snarky.ca/why-you-should-use-python-m-pip/

https://pypi.org/
https://pypi.org/project/Django/
https://pypi.org/project/Django/
https://pypi.org/project/pip/
https://snarky.ca/why-you-should-use-python-m-pip/
https://pypi.org/
https://pypi.org/project/Django/
https://pypi.org/project/pip/
https://snarky.ca/why-you-should-use-python-m-pip/

Chapter 1: Initial Set Up 22

Install Django

Now that we have learned how to install Python properly, use virtual environments, and update

pip to the latest version, it is time to install Django for the first time.

In the ch1-setup directory, reactivate the existing virtual environment and install Django.

Shell

Windows
$.venv\Scripts\Activate.ps1
(.venv) $ python -m pip install django~=5.0.0

macOS
$ source .venv/bin/activate
(.venv) $ python3 -m pip install django~=5.0.0

This command uses the comparison operator,∼=, to install the latest version of Django 5.0.x. As

I type these words, the newest version is 5.0.4, but soon it will be 5.0.5 and then a month later

5.0.6. By using ∼=5.0.0, we ensure that the latest version of 5.0.x will be installed when the

user executes the command.

If we did not “pin” our version number in this way–if we just installed Django using the command

python -m pip install django–then the latest version of Django will be installed. There is

no guarantee that all the code in this book will work perfectly on a later version of Django. By

specifying the version number for each software package installed, you can update them one at

a time to ensure compatibility.

Note: If they differ, I will provide separateWindows andmacOS commands. However, when using

python on Windows vs. python3 on macOS, the default will be python for conciseness.

First Django Project

To create a newDjango project, use the command django-admin startproject django_project

.. A Django project can have almost any name, but we will use django_project in this book.

Chapter 1: Initial Set Up 23

Shell

(.venv) $ django-admin startproject django_project .

It’s worth pausing here to explain why you should add a period (.) to the end of the previous

command. If you just run django-admin startproject django_project without a period at the

end, then by default, Django will create this directory structure:

Layout

django_project/
├── django_project
│ ├── __init__.py
│ ├── asgi.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
├── manage.py

Do you see the multiple django_project directories? First, there is a top-level django_project

directory, andwithin it another one containing the files we need for our Django project. Opinions

differ on the “best” approach within the Django community, but having these two directories

with the same name feels redundant. Deployment is also somewhat simpler with only one

django_project directory, so I prefer adding a period to the end that installs Django in the

current directory.

Layout

├── django_project
│ ├── __init__.py
│ ├── asgi.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
├── manage.py

As you progress in your journey learning Django, you will encounter more situations like this,

where the Django community has different opinions on the correct best practices. Django is

eminently customizable, which is a great strength; however, the tradeoff is that this flexibility

comes at the cost of seeming complexity. Generally speaking, it’s a good idea to research any

such issues, decide, and stick with them!

Chapter 1: Initial Set Up 24

The Development Server

Django includes a built-in, lightweight local development web server accessible via the run-

server24 command. The development server automatically reloads Python code for each request

and serves static files. However, some actions, such as adding files, will not automatically trigger

a restart, so if your code is not working as expected, a manual restart is always a good first step.

By default, the server runs on port 8000 on the IP address 127.0.0.1, which is known as the

“loopback address” because no data is sent from our computer (host) to the local network or

internet; instead, it is “looped back” on itself so the computer sending the data becomes the

recipient.

Let’s confirm everything is working correctly by starting the local development server now.We’ll

use manage.py to execute the runservermanagement command.

Shell

(.venv) $ python manage.py runserver
Watching for file changes with StatReloader
Performing system checks...

System check identified no issues (0 silenced).

You have 18 unapplied migration(s). Your project may not work properly until you
apply the migrations for app(s): admin, auth, contenttypes, sessions.

Run 'python manage.py migrate' to apply them.
June 28, 2024 - 16:43:31
Django version 5.0.6, using settings 'django_project.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CTRL-BREAK.

Don’t worry about the text in red about 18 unapplied migrations. We’ll get to that in the next

chapter. The critical part, for now, is to visit http://127.0.0.1:8000/ in your web browser and

make sure the following image is visible:

24https://docs.djangoproject.com/en/5.0/ref/django-admin/#runserver

https://docs.djangoproject.com/en/5.0/ref/django-admin/#runserver
https://docs.djangoproject.com/en/5.0/ref/django-admin/#runserver
https://docs.djangoproject.com/en/5.0/ref/django-admin/#runserver

Chapter 1: Initial Set Up 25

Django Welcome Page

Note: On Windows, the final line says to use CONTROL-BREAK to quit, whereas, on macOS, it is

CONTROL-C. Newer Windows keyboards often do not have a Pause/Break key, so using the c key

usually works.

For readers new to web development, it is worth mentioning that localhost is a common short-

hand for 127.0.0.1, so theURL addresses http://127.0.0.1:8000/ and http://localhost:8000/

are functionally equivalent. In this book, we will default to 127.0.0.1:8000 because that is what

Django outputs in the terminal, but either option is acceptable.

If you look at your files and folders, youwill notice a new db.sqlite3 file has been created. SQLite

automatically creates a new file the first time you try to connect if one doesn’t already exist.

Chapter 1: Initial Set Up 26

Layout

├── django_project
│ ├── __init__.py
| ├── asgi.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
├── db.sqlite3 # new
├── manage.py

Go ahead and stop the local server with Control + c. Then, exit the virtual environment by

typing deactivate and then Return.

Shell

Windows or macOS
(.venv) $ deactivate

This book provides lots of practice with virtual environments, so don’t worry if they are still

confusing. The basic pattern for any new Django project is to create and activate a virtual

environment, install Django, and then run startproject.

It’s worth noting that only one virtual environment can be active in a command-line tab. In future

chapters, we will create a new virtual environment for each new project, so either make sure to

deactivate your current environment or open a new tab for new projects.

Text Editors

The command line is where we execute commands for our programs, but a text editor is where

code is written. The computer doesn’t care what text editor you use–the result is just code–but

a good text editor can provide helpful hints and catch typos for you.

Many modern text editors are available, and they come with helpful extensions to make Python

and Django development more accessible. Two of the more popular options are PyCharm25

and Visual Studio Code26. PyCharm has a paid Professional and free Community version, while

VSCode is free. Ultimately, it does not matter what text editor you choose: the result is just code.
25https://www.jetbrains.com/pycharm/download/
26https://code.visualstudio.com/

https://www.jetbrains.com/pycharm/download/
https://code.visualstudio.com/
https://www.jetbrains.com/pycharm/download/
https://code.visualstudio.com/

Chapter 1: Initial Set Up 27

VSCode Configurations

If you’re not already using a text editor, download and install VSCode from the official website.

There are three recommended configurations you can add to improve your developer produc-

tivity.

The first is to add the official Python extension to VSCode. On Windows, navigate to File ->

Settings -> Extensions; on macOS, Code -> Settings -> Extensions to launch a search bar

for the extensions marketplace. Enter “python” and the official Microsoft extension will be the

first result. Install it.

The second is adding Black27, a Python code formatter quickly becoming the default within

the Python community. In the terminal, run the command python -m pip install black on

Windows or python3 -m pip install black on macOS.

Shell

(.venv) $ python -m pip install black

Next, within VSCode, open the settings by navigating to File -> Preferences -> Settings on

Windows or Code -> Preferences -> Settings on macOS. Search for “default formatter”. Under

“Editor: Default Formatter” select “Black Formatter” from the drop down list.

Then search for “format on save” and enable “Editor: Format on Save.” Black will automatically

format your code whenever a *.py file is saved.

To confirm this is working, use your text editor to create and save a new file called hello.py

within the ch1-setup directory located on your desktop and type in the following using single

quotes:

hello.py

print('Hello, World!')

On save, it should update automatically to using double quotes, which is Black’s default prefer-

ence28: print("Hello, World!"). That means everything is working correctly.

27https://pypi.org/project/black/
28https://black.readthedocs.io/en/stable/the_black_code_style/current_style.html#strings

https://pypi.org/project/black/
https://black.readthedocs.io/en/stable/the_black_code_style/current_style.html#strings
https://black.readthedocs.io/en/stable/the_black_code_style/current_style.html#strings
https://pypi.org/project/black/
https://black.readthedocs.io/en/stable/the_black_code_style/current_style.html#strings

Chapter 1: Initial Set Up 28

The third and final configuration allows you to open VSCode directly from your terminal. This

technique is useful since a standardworkflow opens the terminal, navigates to the code directory

you want to work on, and opens it with your text editor.

To enable this functionality, press Command + Shift + P simultaneously within VSCode to

open the command palette, which allows us to customize our VS Code settings. Then, in the

command palette, type shell: the top result will be “Shell Command: Install code command in

PATH.” Then, hit enter to install this shortcut. A success message will appear: “Shell command

‘code’ successfully installed in PATH.” The PATH variable29, by the way, is often used to customize

terminal prompts.

Return to your terminal and navigate to the ch1-setup directory. If you type code . it will open

up in VS Code.

Shell

(.venv) $ code .

Install Git

The final step is to install Git, a version control system indispensable to modern software

development. With Git, you can collaborate with other developers, track all your work via

commits, and revert to any previous code version, even if you accidentally delete something

important! This is not a book on Git, so all necessary commands are given and briefly explained,

but there are numerous resources available for free on the internet if you’d like to learn more

about Git itself30.

On Windows, navigate to the official website at https://git-scm.com/ and click on the “Down-

load” link, which should install the proper version for your computer. Save the file, open your

Downloads folder, and double-click on the file to launch the Git for Windows installer. Click the

“Next” button through most early defaults, as they are sufficient and can be updated later. Make

sure that under “Choosing the default editor used by Git,” the selection is for “Use Visual Studio

Codeas Git’s default editor.” In the section on “Adjusting the name of the initial branch in new

29https://en.wikipedia.org/wiki/PATH_(variable)
30https://docs.github.com/en/get-started/using-git/about-git

https://en.wikipedia.org/wiki/PATH_(variable)
https://docs.github.com/en/get-started/using-git/about-git
https://docs.github.com/en/get-started/using-git/about-git
https://en.wikipedia.org/wiki/PATH_(variable)
https://docs.github.com/en/get-started/using-git/about-git

Chapter 1: Initial Set Up 29

repositories,” make sure the option to “Override the default branch name for new repositories”

is selected so that “main” is used.

To confirm that Git is installed on Windows, close all current shell windows and open a new one

to load the changes to our PATH variable. (PATH is an environment variable that specifies where

executable programs are located. In other words, when you type git, where does your command

line look?) Type in git --version to display the installed version of Git.

Shell

Windows
$ git --version
git version 2.45.2.windows.1

On macOS, Xcode31 is primarily designed for building iOS apps but includes many developer

features needed on macOS. Currently, installing Git via Xcode is the easiest option. To check if

Git is installed on your computer, type git --version in a new terminal window.

Shell

macOS
$ git --version
git version 2.45.2

If you do not have Git installed, a popup message will ask if you want to install it as part of

“command line developer tools.” Select “Install,” which will load Xcode and its command-line

tools package. If you do not see the message, type xcode-select --install instead to install

Xcode directly.

Be aware that Xcode is a large package, so the initial download may take some time. Xcode is

primarily designed for building iOS apps but includesmany developer features needed onmacOS.

Once the download is complete, close all existing terminal shells, open a new window, and type

in git --version to confirm the installation worked.

31https://developer.apple.com/xcode/

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

Chapter 1: Initial Set Up 30

Shell

macOS
$ git --version
git version 2.45.2

OnceGit installs on your localmachine, wemust do a one-time system configuration by declaring

the name and email address associated with all your Git commits. We will also set the default

branch name to main. Within the command line shell, type the following two lines. Make

sure to update them with your name and email address, not the defaults of “Your Name” and

“yourname@email.com”!

Shell

$ git config --global user.name "Your Name"
$ git config --global user.email "yourname@email.com"
$ git config --global init.defaultBranch main

You can always change these configs later by retyping the same commands with a new name or

email address.

Conclusion

Configuring a software development environment from scratch is challenging. Even experienced

programmers have difficulty with the task, but it is a one-time pain that is more than worth

it. We can now start new Django projects quickly and have learned about the command line,

Python interactive mode, how to install the latest version of Python and Django, configured our

text editor, and installed Git. Everything is ready for our first proper Django website in the next

chapter.

Chapter 2: Hello, World Website

In this chapter, we will review how websites and web frameworks work, examine Django’s

architecture, and build a simple Djangowebsite that displays “Hello,World.”Wewill also examine

two fundamental parts of Django, URL mappers, and views, and use Git for the first time. The

complete source code for this and all future chapters is available online at the official GitHub

repo32 for the book.

How the Internet Works

You probably use the Internet every day, but unless you are a web developer, you are unlikely to

know the full details of what happens when you type an address like https://learndjango.com

into your browser and press the return key. Underpinning this user experience is a complex

network of communication protocols, web servers, and logic.

Computer science students typically take an entire course devoted to Network Communication,

and there are network engineers who focus their careers on this one area. For our purposes as

web developers, a general understanding is sufficient to get started, but if you eventually work

on high-traffic websites, the details and nuance of network communication increasingly matter.

Underpinning the Internet is a network of connected machines called servers. These are special

computers that don’t have a screen, a mouse, or a keyboard and typically live in data centers

amongst racks and racks of other servers. In the old days, web developers had to run their

own physical servers, but these days, it is far more common to rent space from a large hosting

company instead, known colloquially as “the cloud.” One way to visualize this web of connected

machines is via the Submarine Cable Map33, an interactive display of the underwater cables

connecting continents and countries.

32https://github.com/wsvincent/djangoforbeginners
33https://www.submarinecablemap.com/

https://github.com/wsvincent/djangoforbeginners
https://github.com/wsvincent/djangoforbeginners
https://www.submarinecablemap.com/
https://github.com/wsvincent/djangoforbeginners
https://www.submarinecablemap.com/

Chapter 2: Hello, World Website 32

Submarine Cable Map

Let’s trace what happens when you try to visit the website, https://learndjango.com. We can

simplify it into six steps:

1. You enter a domain name into a browser

2. The browser looks up the IP address for the domain name via DNS (Domain Name System)

3. The browser establishes a network connection to the web server

4. The browser sends an HTTP request for the desired resource (e.g., the homepage)

5. The website processes the request (more on this below) and returns an HTTP response

6. The browser begins rendering the webpage

HTTP (Hypertext Transfer Protocol) is the set of rules computers use to communicate with one

another over the Internet to power websites. It was created by Tim Berners-Lee, the inventor of

the World Wide Web, who also created the HTML markup language and the URL system. Once

an HTTP request has been received, the web browser sets about rendering the web page using

HTML. Any additional resources required for a webpage or additional webpages undergo the

Chapter 2: Hello, World Website 33

same HTTP request and HTTP response cycle until a user leaves the website and the network

connection is closed.

When you request a website like learndjango.com, your web browser first asks the DNS (Domain

Name System) to translate the domain name into an IP (Internet Protocol) address, a unique

numerical identifier computers use to find one another across the Internet. Once the web

browser knows the IP address, it establishes a network connection with the server at that IP

address containing the contents of the desired website. The browser sends an HTTP request

for the desired resource (e.g., the homepage) and the server returns an HTTP response with its

contents.

HowWeb Frameworks Work

Websites come in two basic categories: static and dynamic. A static website consists of individual

HTMLdocumentswhere if yourwebsite has ten pages, you need ten individual HTMLdocuments

that can be served. This approach only works for very small sites. Most websites are dynamic,

consisting of a database, HTML templates, and an application server that can generate files

before sending them to your browser. With a dynamic website, a relatively small amount of

code can generate hundreds or even thousands of web pages. Web frameworks like Django are

designed for dynamic websites.

In the early days of the World Wide Web, developers had to hand code all the pieces of a

dynamic website themselves, which was error-prone, often insecure, and not performant. Web

frameworks like Django soon emerged to standardize this process. Web developers realized

many tasks were routine and would be better performed and monitored by a community rather

than individuals.

At its core, a web framework like Django has three main tasks:

1. Map URLs to view logic for rendering pages

2. Provide an abstraction layer for interacting with a database

3. Display HTML-like code via a templating system

That’s it!Whileweb frameworks arewritten in different programming languages and have slightly

different design philosophies, their overall goal is essentially the same.

Chapter 2: Hello, World Website 34

Django Architecture

Now that we have reviewed how websites and web frameworks work let’s examine Django’s

architecture. There are four main components to consider: URLs, views, models, and templates.

Visually, the Django request and response cycle looks as follows where the solid lines represent

required interactions and the dotted lines optional ones.

Django Architecture

When an HTTP Request comes in from a Web Browser the first part of Django it engages with is

the URL Dispatcher (urls.py file), which searches through configured URL patterns and stops

at the first matching View (views.py file). The View assembles the requested data and styling

before generating an HTTP Response back to the web browser. Technically, this is all we need. It

is possible to have a Django website with just a URL Dispatcher and a View, as we will see later

in the chapter.

Chapter 2: Hello, World Website 35

It is more common, however, to have two more components involved: Model and Template. For

a database-backed website, the View will interact with the Model (models.py file), which defines

database tables, behaviors, and supports queries from the Database. This data is then sent back

to the View, which in most cases then sends it to a Template for rendering. The Template is

primarily an HTML file but can be in any text-based format, including XML and JSON. Once the

View has all the necessary information, it returns an HTTP Response to the Web Browser.

This Django request/response cycle repeats for each new HTTP Request made by the Web

Browser.

Model-View-Controller vs Model-View-Template

If you have built websites before, you might be familiar with theModel-View-Controller (MVC)

pattern used by many web frameworks, including Ruby on Rails, Spring (Java), Laravel (PHP), and

ASP.NET (C#). This is a popular way to internally separate an application’s data and logic and

display it into separate components that are easier for developers to reason about.

In the traditional MVC pattern, there are three major components:

• Model: Manages data and core business logic

• View: Renders data from the model in a particular format

• Controller: Accepts user input and performs application-specific logic

Django’s approach is sometimes called Model-View-Template (MVT), but is more accurately a

4-part pattern incorporating URL configuration,Model-View-Template-URL (MVTU):

• Model: Manages data and core business logic

• View: Describes which data is sent to the user but not its presentation

• Template: Presents the data as HTML with optional CSS, JavaScript, and static assets

• URL Configuration: Regular expression components configured to a View

The “View” in MVC is analogous to a “Template” in Django, while the “Controller” in MVC is

divided into a Django “View” and “URL dispatcher.”

Chapter 2: Hello, World Website 36

If you are new to web development, the distinction betweenMVC andMVTwill not matter much:

this book demonstrates Django’s way of doing things. However, if you are a web developer with

previous MVC experience, it can take a little while to shift your thinking to the “Django way,”

which is more loosely coupled and allows for easier modifications than the MVC approach.

Initial Set Up

For our first Djangowebsite, wewill build a “Hello,World” website as simply as possible. Although

most Django websites have a URL dispatcher, views, model, and template, technically, we only

need a URL dispatcher and views. That’s what we’ll use here, but subsequent chapters will

introduce both templates and models.

To begin, open up a new command line shell or use the built-in terminal on VS Code. For the

latter, click “Terminal” at the top and then “New Terminal” to bring it up at the bottom of the VS

Code interface.

Make sure you are not in an existing virtual environment by checking that nothing is in

parentheses before your command line prompt. You can even type deactivate to be entirely

sure. Then, navigate to your desktop’s code directory and create a helloworld directory with

the following commands.

Shell

Windows
$ cd onedrive\desktop\code
$ mkdir helloworld
$ cd helloworld

macOS
$ cd ~/desktop/code
$ mkdir helloworld
$ cd helloworld

Create a new virtual environment called .venv, activate it, and install Django with Pip, as we did

in the previous chapter. We can also install Black now, too.

Chapter 2: Hello, World Website 37

Shell

Windows
$ python -m venv .venv
$.venv\Scripts\Activate.ps1
(.venv) $ python -m pip install django~=5.0.0
(.venv) $ python -m pip install black

macOS
$ python3 -m venv .venv
$ source .venv/bin/activate
(.venv) $ python3 -m pip install django~=5.0.0
(.venv) $ python3 -m pip install black

Now,we’ll use theDjango startproject command to create a newproject called django_project.

Remember to include the period (.) at the end of the command so that the project is installed in

our current directory.

Shell

(.venv) $ django-admin startproject django_project .

Let’s pause to examine the default project structure Django has provided. You can explore this

visually by opening the new directory with your mouse on the desktop. The .venv directory

may or may not be initially visible because it is a “hidden file” that is still there and contains

information about our virtual environment.

Code

├── django_project
│ ├── __init__.py
| ├── asgi.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
├── manage.py

Django has created a django_project directory and a manage.py file. Within django_project,

there are five new files:

Chapter 2: Hello, World Website 38

• __init__.py indicates that the files in the folder are part of a Python package. Without

this file, we cannot import files from another directory, which we will do often in Django!

• asgi.py configures an optional ASGI (Asynchronous Server Gateway Interface) application

• settings.py controls our Django project’s overall settings.

• urls.py tells Django which pages to build in response to a browser or URL request.

• wsgi.py configures aWSGI (Web Server Gateway Interface) application, the default setting

for Django

The manage.py file is not part of django_project but is used to execute various Django manage-

ment commands, such as running the local web server or creating a new app.

Let’s try out our new project by executing python manage.py runserver to launch Django’s built-

in web server. This server is suitable for development but not production. We will look deeper at

production setups when we deploy websites later in the book.

Shell

(.venv) $ python manage.py runserver
Watching for file changes with StatReloader
Performing system checks...

System check identified no issues (0 silenced).

You have 18 unapplied migration(s). Your project may not work properly until you apply th\
e migrations for app(s): admin, auth, contenttypes, sessions.
Run 'python manage.py migrate' to apply them.
June 28, 2024 - 16:43:31
Django version 5.0.6, using settings 'django_project.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CTRL-BREAK.

If you visit http://127.0.0.1:8000/ you should see the following image:

Chapter 2: Hello, World Website 39

Django Welcome Page

Notice that a db.sqlite3 file has been created in your project directory since we attempted to

connect to SQLite for the first time. At the moment, it is empty.

Chapter 2: Hello, World Website 40

Code

├── django_project
│ ├── __init__.py
| ├── asgi.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
├── db.sqlite3 # new
├── manage.py

Migrations

On the command line, we still see thatwarning about 18 unapplied migrations; let’s explore now

what is occurring. Migrations are special scripts Django creates automatically to track changes

to the database. As a project grows over time, there are often many changes to the Django

database models that define the structure of a database and all its tables. The Django migrations

framework allows developers to track changes over time and change the database to match the

configurations within a specific migrations file.

When you start a new project using the startproject command, Django includes several built-

in apps (more on what an app is shortly) that make changes to the database, including admin,

auth, contenttypes, and sessions. We can apply these changes to the local database using the

management command, migrate. Type Control + c first to stop the local server.

Shell

$ python manage.py migrate

Operations to perform:
Apply all migrations: admin, auth, contenttypes, sessions
Running migrations:
Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying admin.0001_initial... OK
Applying admin.0002_logentry_remove_auto_add... OK
Applying admin.0003_logentry_add_action_flag_choices... OK
Applying contenttypes.0002_remove_content_type_name... OK
Applying auth.0002_alter_permission_name_max_length... OK

Chapter 2: Hello, World Website 41

Applying auth.0003_alter_user_email_max_length... OK
Applying auth.0004_alter_user_username_opts... OK
Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK
Applying auth.0007_alter_validators_add_error_messages... OK
Applying auth.0008_alter_user_username_max_length... OK
Applying auth.0009_alter_user_last_name_max_length... OK
Applying auth.0010_alter_group_name_max_length... OK
Applying auth.0011_update_proxy_permissions... OK
Applying auth.0012_alter_user_first_name_max_length... OK
Applying sessions.0001_initial... OK

The migrate command applies all available migrations and lists them: Apply all migrations:

admin, auth, contenttypes, sessions. The output includes the full name of each app and

its migration script. For example, Applying contenttypes.0001_initial... OK indicates that

migration script 0001_initial in the contenttypes app was run successfully.

Restart the development server, and there will no longer be any warnings.

Shell

(.venv) $ python manage.py runserver
Watching for file changes with StatReloader
Performing system checks...

System check identified no issues (0 silenced).
June 28, 2024 - 16:43:31
Django version 5.0.6, using settings 'django_project.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CTRL-BREAK.

The db.sqlite3 file is now populated with built-in tables and data from Django. If you install the

free SQLite viewer extension, SQLite Viewer34, you can visually inspect them.

We will cover databases in more depth later in the book. At this stage, the important point is that

Django uses migration files to control changes to the database, and the migrate management

command applies them.

34https://marketplace.visualstudio.com/items?itemName=qwtel.sqlite-viewer

https://marketplace.visualstudio.com/items?itemName=qwtel.sqlite-viewer
https://marketplace.visualstudio.com/items?itemName=qwtel.sqlite-viewer

Chapter 2: Hello, World Website 42

Create An App

A Django project can contain many “apps,” an organizational technique for keeping our code

clean and readable. Each app should control an isolated piece of functionality. If you take a look

at the django_project/settings.py file, there are already six built-in apps Django has provided

for us. They are located in the django.contrib directory and control functionality for the admin,

auth, contenttypes, sessions, messages, and staticfiles. You don’t need to know what each one

does at this point.

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",

]

Nothing is forcing the app convention–you couldwrite all your code in a single file, if desired–but

this convention of separating logic makes it much easier to structure and reason about a Django

project. We use apps when we want to add functionality to the Django project. For example, an

e-commerce site might have one app for user authentication, another for payments, and a third

to power item listing details. How and when you split functionality into apps is very subjective,

but a good rule of thumb is that when a single app feels like it’s doing too much, it is time to split

features into separate apps, each with a single function.

To create a new app, go to the command line and quit the running server using Control+c. Then,

use the startapp command followed by our app’s name. In this example, we will use the name

“pages.” A best practice in Django is for app names to be plural–pages, payments, etc.–unless

doing so does not make sense, such as for a “blog” app.

Chapter 2: Hello, World Website 43

Shell

(.venv) $ python manage.py startapp pages

If you look visually at the django_project directory, Django has created within it a new pages

directory containing the following app files:

Code

├── pages
│ ├── __init__.py
│ ├── admin.py
│ ├── apps.py
│ ├── migrations
│ │ └── __init__.py
│ ├── models.py
│ ├── tests.py
│ └── views.py

Let’s review what each new pages app file does:

• admin.py is a configuration file for the built-in Django Admin app

• apps.py is a configuration file for the app itself

• migrations/ keeps track of any changes to our models.py file so it stays in sync with our

database

• models.py is where we define our database models, which Django automatically translates

into database tables

• tests.py is for app-specific tests

• views.py is where we handle the request/response logic for our web app

Even though our new app exists within the Django project, Django doesn’t “know” about it until

we explicitly add it to the django_project/settings.py file. In your text editor, open the file

and scroll down to INSTALLED_APPS, where you’ll see six built-in Django apps. Add pages at the

bottom.

Chapter 2: Hello, World Website 44

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"pages", # new

]

Your First View

We’ll create a static page for our first website that outputs the text “Hello, World!” This page does

not involve a database or even a template file. Instead, it is a good introduction to how views and

URLs work within Django.

A view is a Python function that accepts aWeb request and returns aWeb response. The response

can be the HTML contents of a Web page, a redirect, a 404 error, an image, or almost anything.

When a web page is requested, Django automatically creates a HttpRequest object that contains

metadata about the request. Then Django loads the appropriate view, passing HttpRequest as

the first parameter to the view function. The view is ultimately responsible for returning an

HttpResponse object.

In our pages app, there is already a file called views.py, which comes with the following default

text:

Chapter 2: Hello, World Website 45

Code

pages/views.py
from django.shortcuts import render

Create your views here.

Wewill take a proper look at render in the next chapter, but for now, update the pages/views.py

file with the following code:

Code

pages/views.py
from django.http import HttpResponse

def home_page_view(request):
return HttpResponse("Hello, World!")

Let’s step through it line-by-line:

• Import the class HttpResponse from the django.httpmodule.

• Define a function called home_page_view. In Python, it is customary to use snake_case–all

lowercase words separated by underscores–for function and variable names.

• The first parameter passed into a view is the HttpRequest object. It is a convention to

name it request for readability, but the order is what matters, not the name, so you could

technically call it req or any other name and it would still work.

• The view returns an Http Response object with the string of text “Hello, World!”

All views work this way: first, you define a name for the view, name the HttpRequest object

(request in this case), and then return something. Adding more logic and parameters to views is

possible, but the general pattern is the same.

URL Dispatcher

With our view in place, it is time to configure a related URL. In your text editor, create a new file

called urls.py within the pages app and update it with the following code:

Chapter 2: Hello, World Website 46

Code

pages/urls.py
from django.urls import path

from .views import home_page_view

urlpatterns = [
path("", home_page_view),

]

On the top line, we import path from Django to power our URL pattern. By referring to the

views.py file as .views, we are telling Django to look within the current directory for a views.py

file and import the view named home_page_view. Note the lack of a leading slash / in the path

pattern. Django automatically prefixes the leading slash for us.

Our URL pattern here has two parts:

• the route itself, here defined by the empty string, ""

• a reference to the view home_page_view

In other words, if the user requests the homepage represented by the empty string, ", Django

should use the view called home_page_view.

We’re almost done at this point. The last step is to update our django_project/urls.py file, the

gateway to other URL patterns distinct from each app. This architectural pattern will makemore

sense as we build increasingly complex web applications later in the book.

Django automatically imports and sets a path for the built-in admin. To include additional URL

paths, we import the function include from the django.urls module, and then set its path. In

this case, we again use the empty string, "", and include all URLs contained in the pages app.

The Django docs35 have a fuller description of how this process works under the hood if you are

hungry for more details at this stage.

Here is what the updated code looks like:

35https://docs.djangoproject.com/en/5.0/topics/http/urls/#including-other-urlconfs

https://docs.djangoproject.com/en/5.0/topics/http/urls/#including-other-urlconfs
https://docs.djangoproject.com/en/5.0/topics/http/urls/#including-other-urlconfs

Chapter 2: Hello, World Website 47

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
path("admin/", admin.site.urls),
path("", include("pages.urls")), # new

]

Now, whenever a user visits the homepage, represented by the empty string here, "", Django will

look within the pages app for matching URL routes.

We have all the code we need. To confirm everything works as expected, restart our Django

server:

Shell

(.venv) $ python manage.py runserver

If you refresh the browser for http://127.0.0.1:8000/, it will now display the text “Hello,

World!”

Hello World Homepage

And that’s it! We’ve created a Django project from scratch and had our first interactions with

Django’s architecture and typical pattern:

• Creating a project and then an app within it

• Writing a view

• Connecting the view to a URL dispatcher

It is possible to be clever and write a Django “Hello, World” app in fewer lines of code and even in

a single file: see the repository django-microframework36 if you’re curious to learn more. But it’s
36https://github.com/wsvincent/django-microframework

https://github.com/wsvincent/django-microframework
https://github.com/wsvincent/django-microframework

Chapter 2: Hello, World Website 48

more important to start internalizing typical Django project structure and patterns at this stage.

Git

In the previous chapter, we installed the version control system Git. Let’s use it here. The first

step is initializing (or adding) Git to our repository. Make sure you’ve stopped the local server

with Control+c, then run the command git init.

Shell

(.venv) $ git init

If you type git status you’ll see a list of changes since the last Git commit. Since this is our first

commit, this list includes the contents of the entire directory.

Shell

(.venv) $ git status
On branch main

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

.venv
django_project/
db.sqlite3
manage.py
pages/

nothing added to commit but untracked files present (use "git add" to track)

Note that the virtual environment, .venv, is included. It is a best practice not to include your

virtual environment in Git source control since it may contain secret information such as API

keys.

The solution is to create a new file in the project-level directory called .gitignore, which tells Git

what to ignore. The period at the beginning indicates this is a “hidden” file. The file still exists, but

Chapter 2: Hello, World Website 49

it is a way to communicate to developers that its contents are probably meant for configuration

and not source control.

Here is how your project structure should look now:

Layout

├── django_project
│ ├── __init__.py
│ ├── asgi.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
├── pages
│ ├── migrations
| ├── __init__.py
│ ├── __init__.py
│ ├── admin.py
│ ├── apps.py
│ ├── models.py
│ ├── tests.py
│ ├── urls.py
│ └── views.py
├── .gitignore # new
├── db.sqlite3
├── manage.py

In this new .gitignore file, add a single line for .venv.

.gitignore

.venv/

If you run git status again, you will see that .venv is no longer there. It has been “ignored”

by Git. In professional projects, a .gitignore file is typically quite lengthy. For efficiency and

security reasons, there are often quite a few directories and files that should be removed from

source control. However, optimization is not relevant to learning projects such as this.

At the same time, we do want a record of packages installed in our virtual environment. The cur-

rent best practice is to create a requirements.txt file with this information. The command pip

freezewill output the contents of your current virtual environment, and by using the > operator,

Chapter 2: Hello, World Website 50

we can do all this in one step: output the contents into a new file called requirements.txt. If your

server is still running, enter Ctrl+c and Enter to exit before entering this command.

Shell

(.venv) $ pip freeze > requirements.txt

A new requirements.txt file will appear with all our installed packages and their dependencies.

If you look inside this file, you’ll see nine packages even thoughwe have installed only two: Django

and Black. That’s because Django and Black also depend on other packages. It is often the case

that when you install one Python package, you’re also installing multiple dependent packages.

Since keeping track of all the packages is difficult, a requirements.txt file is critical.

requirements.txt

asgiref==3.8.1
black==24.4.2
click==8.1.7
Django==5.0.6
mypy-extensions==1.0.0
packaging==24.1
pathspec==0.12.1
platformdirs==4.2.2
sqlparse==0.5.0

Next, we want to perform our first Git commit to store all the recent changes. Git has a lengthy

list37 of options/flags. For example, to add all recent changes, we can use git add -A. Then,

to commit the changes, we will use a -m flag (“message”) to describe what has changed. It is

very important to always add a message to your commits since most projects will easily have

hundreds, if not thousands, of commits. Adding a descriptive message each time helps debug

efforts later since you can search through your commit history.

37https://git-scm.com/docs/git

https://git-scm.com/docs/git
https://git-scm.com/docs/git
https://git-scm.com/docs/git

Chapter 2: Hello, World Website 51

Shell

(.venv) $ git add -A
(.venv) $ git commit -m "initial commit"

Conclusion

Congratulations! This chapter covered a lot of material, starting with how the Internet and web

frameworks work and progressing on to Django’s architecture. We then built our first Django

website while learning about apps, views, URLs, and the internal Django web server. We also

workedwith Git to track our changes, create a .gitignore file, and generate a requirements.txt

file.

If you become stuck, compare your code against the official repo38.

Please continue to the next chapter, where we’ll build a more complex Django application using

templates and more advanced function-based views while also incorporating testing.

38https://github.com/wsvincent/djangoforbeginners

https://github.com/wsvincent/djangoforbeginners
https://github.com/wsvincent/djangoforbeginners

Chapter 3: Personal Website

In this chapter, we will build a Personal Website containing a Homepage and an About page while

learning more about Django’s templates, function-based views, and testing. Templates are the

presentation layer that controls how data is displayed, but they also allow for inheritance and

basic logic consistent with Django’s design philosophy of Don’t Repeat Yourself (DRY). Views

combine URLs and templates while adding quite a bit of logic to the data; they are often

considered the logic layer in a Django app. The third fundamental concept is testing, which is

vital to any web project and well-supported in Django. By the end of this chapter, you will have

learned how to work with simple function-based views and templates and write your first tests.

Initial Set Up

Our initial setup is similar to the previous chapter and contains the following steps:

• make a new directory for our code called personal_website and navigate into it

• create a new virtual environment called .venv and activate it

• install Django and Black

• create a new Django project called django_project

• make a new app called pages

Within a new command line shell, navigate to the code folder on the desktop and create a new

folder called personal_website. You should not see an active virtual environment, represented

by (.venv), before the command line prompt of > on Windows or % on macOS. If you do, you’re

still in an existing virtual environment, so type deactivate to leave it. Change directories into

personal_website, create a new virtual environment, and activate it.

Chapter 3: Personal Website 53

Shell

Windows
$ cd onedrive\desktop\code
$ mkdir personal_website
$ cd personal_website
$ python -m venv .venv
$.venv\Scripts\Activate.ps1
(.venv) $

macOS
$ cd ~/desktop/code
$ mkdir personal_website
$ cd personal_website
$ python3 -m venv .venv
$ source .venv/bin/activate
(.venv) $

Next, install Django and Black, create a new project called django_project, and make a new app

called pages. These commands will become very familiar by the end of this book, as the only

thing that changes is the name of your project or app.

Shell

(.venv) $ python -m pip install django~=5.0.0 black
(.venv) $ django-admin startproject django_project .
(.venv) $ python manage.py startapp pages

Even though we added a new app, Django will not recognize it until we update the INSTALLED_-

APPS settingwithin django_project/settings.py. Open your text editor and add it to the bottom

now:

Chapter 3: Personal Website 54

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"pages", # new

]

Initialize the database with migrate and start the local web server with runserver.

Shell

(.venv) $ python manage.py migrate
(.venv) $ python manage.py runserver

Then, navigate to http://127.0.0.1:8000/ to see the Django welcome page. With only a few

commands, we have a fresh Django project running within a virtual environment, Black installed,

and a pages app.

Homepage

A Django “view” is a Python function that accepts a Web request and returns a Web response.

When a Web page is requested, Django automatically creates an HttpRequest object with

metadata about the request. The view returns an HttpResponse object.

We will begin by repeating the steps from the previous chapter to create a homepage using just

a view and a URL dispatcher. Then, we will create an About page using a template and more

complex view logic.

Let’s start with the view. Django prepopulates the views.py file within an app with the following

code:

Chapter 3: Personal Website 55

Code

pages/views.py
from django.shortcuts import render

Create your views here.

We will use render for the About page, so leaving that import as is is fine. For our home page,

we will repeat the steps from the previous chapter: import the class HttpResponse, create a view

named home_page_view, name the first parameter (which is always the HttpRequest object!) as

request, and then return the text “Homepage.”

Code

pages/views.py
from django.http import HttpResponse
from django.shortcuts import render

def home_page_view(request):
return HttpResponse("Homepage")

The next step is creating a urls.py file within the pages app that imports path from django.urls,

home_page_view from the views.py file in the local directory, and sets a route at the empty string,

"", that calls home_page_view.

Code

pages/urls.py
from django.urls import path

from .views import home_page_view

urlpatterns = [
path("", home_page_view),

]

The final step is updating the project-level urls.py file, the initial entry point for all URL requests.

We import the include function to include other URL configurations and set a URL route of ""

for the pages application.

Chapter 3: Personal Website 56

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
path("admin/", admin.site.urls),
path("", include("pages.urls")), # new

]

That’s it! If the local server is still running on the command line, you should be able to visit the

home page in your browser:

Homepage

Function-Based View About Page

render()39 is a Django shortcut function useful for working with a template. The first parameter

in render() is the request object, and the second parameter is a template name. That means if

we want to create a view for an about page using a template called about.html we can write it

like this:

39https://docs.djangoproject.com/en/5.0/topics/http/shortcuts/#render

https://docs.djangoproject.com/en/5.0/topics/http/shortcuts/#render
https://docs.djangoproject.com/en/5.0/topics/http/shortcuts/#render

Chapter 3: Personal Website 57

Code

pages/views.py
from django.http import HttpResponse
from django.shortcuts import render

def home_page_view(request):
return HttpResponse("Homepage")

def about_page_view(request): # new
return render(request, "pages/about.html")

The new view is named about_page_view and has as its first parameter the HttpRequest object,

which we’ve named request. It uses the render() function to return the request object and a

related template named “pages/about.html.”

Templates

Templates are the presentation layer in Django, providing a convenient way to generate HTML

files that can also includeCSS, JavaScript, andmedia such as images. By default, Django’s template

loading engine looks for a “templates” subdirectory in each app. That means we could add a

templates directory within the pages app and then include the about.html in the following way:

Layout

└── pages
├── templates
├── about.html

This approach works, but it is not a best practice. Django chooses the first template it finds

whose name matches. What happens if there are about.html files within two separate apps?

Django cannot easily tell which one should be used in our function. Fortunately, a simple fix is

to namespace template files by placing themwithin another directory containing the application

name. In other words: app -> templates -> app -> template file.

In our pages app, that would look like this:

Chapter 3: Personal Website 58

Layout

└── pages
├── templates
├── pages
├── about.html

As a Django best practice, you should always adopt this approach when storing template files

within an app. You can create these new directories within your text editor or directly on the

command line:

Shell

(.venv) $ mkdir pages/templates
(.venv) $ mkdir pages/templates/pages

Then, add a new file called about.htmlwithin the pages/templates/pages directory. You can do

this in Visual Studio Code by navigating with your mouse to the top left of your screen, clicking

“File,” and then “New File.” Make sure to name and save the file in the correct location.

The about.html file will have a <h1> tag for a headline and a <p> tag for paragraph text.

Code

<!-- pages/templates/pages/about.html -->
<h1>About page</h1>
<p>This is the new template-powered About page.</p>

Our template is complete! The view, about_page_view, can access the template when called, but

the remaining step is configuring a URL dispatcher.

URL Dispatcher

At this point, the pattern for adding a new URL route should start to feel familiar. We import our

view, about_page_view, and then set its path, about/, and the view name.

Chapter 3: Personal Website 59

Code

pages/urls.py
from django.urls import path

from .views import home_page_view, about_page_view # new

urlpatterns = [
path("about/", about_page_view), # new
path("", home_page_view),

]

And that’s it! Start up the development web server using the runserver command.

Shell

(.venv) $ python manage.py runserver

If you navigate to http://127.0.0.1:8000/about/, the About page will be visible.

FBV About Page

The Django Template Language

All web frameworks (including Django) need a way to generate HTML dynamically, and the most

common approach is to use templates that contain static content and a special syntax for insert-

ing dynamic content. Django has its own templating language40 that is not attempting to replace

dedicated JavaScript front-ends like Vue, React, or Angular. Rather, it is a deliberately limited–

but still powerful–way to use comments, variables, filters, tags, and template inheritance.

40https://docs.djangoproject.com/en/5.0/ref/templates/language/

https://docs.djangoproject.com/en/5.0/ref/templates/language/
https://docs.djangoproject.com/en/5.0/ref/templates/language/

Chapter 3: Personal Website 60

Let’s revisit our about.html template to try out some of these features. We’ll begin with

comment41 tags that allow us to add code that is readable to the developer but not displayed

on the page. Anything between {% comment %} and {% endcomment %} tags will be ignored.

Code

<!-- pages/templates/pages/about.html -->
<h1>About page</h1>
<p>This is the new template-powered About page.</p>
{% comment %}This is just a comment. It won't appear on the web page!{% endcomment %}

If you save the file and refresh theweb browser, the commentwill not be visible. It is not rendered

on the templateHTML sent to the about_page_view and then theweb browser. If youwant to add

multi-line comments, the comment42 tag can be used, but broadly speaking, Django templates

should not be complicated. While it is OK to add basic logic to them, it is better to move the

logistical heavy thinking to views or model files (which we will do later in the book).

Template Context

Whenever a Django template is rendered, a context43 is also created. This context is a dictionary-

like object with variable names for keys and variable values as values. We can and will update

this context with information, often from a database. When you render a template with a given

context, every key in the context dictionary becomes a variable in the template that you can

access and use.

The render()44 shortcut function expects parameters in the following order:

1. The HttpRequest object conventionally named request

2. The template_name

3. The context dictionary

In other words: render(request, template_name, context). By default, context is set to None,

but we can manually add information to see it in action.

41https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#comment
42https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#std-templatetag-comment
43https://docs.djangoproject.com/en/5.0/ref/templates/api/#django.template.Context
44https://docs.djangoproject.com/en/5.0/topics/http/shortcuts/#render

https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#comment
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#std-templatetag-comment
https://docs.djangoproject.com/en/5.0/ref/templates/api/#django.template.Context
https://docs.djangoproject.com/en/5.0/topics/http/shortcuts/#render
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#comment
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#std-templatetag-comment
https://docs.djangoproject.com/en/5.0/ref/templates/api/#django.template.Context
https://docs.djangoproject.com/en/5.0/topics/http/shortcuts/#render

Chapter 3: Personal Website 61

Code

pages/views.py
from django.http import HttpResponse
from django.shortcuts import render

def home_page_view(request):
return HttpResponse("Homepage")

def about_page_view(request):
context = {"name": "Alice"} # new
return render(request, "pages/about.html", context) # new

Here, we’ve added a variable, context, containing a dictionary with the key variable of “name”

and a value variable of “Alice.” To display the context in our template, the syntax for variables45 is

to surround the variable name with brackets {}. Since the key value is “name,” we type {{ name

}} to make it visible.

Code

<!-- pages/templates/pages/about.html -->
<h1>About page</h1>
<p>My name is {{ name }}.</p>

If you refresh your browser, it will now show the name “Alice.”

About Page with Name

As an exercise, swap out the name “Alice” with your name in the pages/views.py file. Then,

refresh the web browser to see if it is now visible on the web page.

We can also add other key/value pairs to the context. For example, let’s add an “age.”

45https://docs.djangoproject.com/en/5.0/topics/templates/#variables

https://docs.djangoproject.com/en/5.0/topics/templates/#variables
https://docs.djangoproject.com/en/5.0/topics/templates/#variables

Chapter 3: Personal Website 62

Code

pages/views.py
from django.http import HttpResponse
from django.shortcuts import render

def home_page_view(request):
return HttpResponse("Homepage")

def about_page_view(request):
context = {

"name": "Alice",
"age": 33, # new

}
return render(request, "pages/about.html", context)

To display the age on our Web page, we can display it as a variable in the template using the

syntax {{ age }}. Note that name is a string since it is in quotations, whereas 33 is an integer.

Setting data types is important in Python code and Django applications, which we will explore

shortly.

Code

<!-- pages/templates/pages/about.html -->
<h1>About page</h1>
<p>My name is {{ name }}. I am {{ age }} years old.</p>

Refresh the About page again to see it update.

About Page with Name and Age

Chapter 3: Personal Website 63

In the pages/views.py file, update the age variable with your own age and refresh the web page

to see the updated result. Anythingwe pass as a variable to our template context can be rendered

on our web page.

The Django template language also comes with over eighty built-in tags46 and built-in filters47

that provide additional functionality. We will explore them in greater depth later in the book.

Tests

Writing tests for your code is as important aswriting the code itself.Without accompanying tests,

you can’t submit new code changes to an open-source project or within any well-structured

company. The reasoning is simple: while your code change may be small, there is no telling what

else it might inadvertently break in the project. Writing good tests provides confidence in your

codebase, doesn’t take too long, and can be automated to run automatically on any new code

changes. In the words of Django co-creator Jacob Kaplan-Moss48, “Code without tests is broken

as designed.”

Testing can be divided into two main categories: unit and integration. Unit tests check a piece

of functionality in isolation, while Integration tests check multiple linked pieces. Unit tests run

faster and are easier tomaintain since they focus on only a tiny amount of code. Integration tests

are slower and harder to maintain since a failure doesn’t point you in the specific direction of

the cause. Most developers focus on writing many unit tests and a small number of integration

tests.

The next question is, what to test? Anytime you create new functionality, a test is necessary to

confirm that it works as intended. For example, in our project, we have a home page and an about

page, and we should test that both exist at the expected URLs. It may seem unnecessary now,

but as a project grows in size, there’s no telling what can change.

The Python standard library contains a built-in testing framework called unittest49 that uses

46https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#ref-templates-builtins-tags
47https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#ref-templates-builtins-filters
48https://jacobian.org/
49https://docs.python.org/3/library/unittest.html

https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#ref-templates-builtins-tags
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#ref-templates-builtins-filters
https://jacobian.org/
https://docs.python.org/3/library/unittest.html
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#ref-templates-builtins-tags
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#ref-templates-builtins-filters
https://jacobian.org/
https://docs.python.org/3/library/unittest.html

Chapter 3: Personal Website 64

TestCase50 instances and a long list of assert methods51 to check for and report failures.

Django’s testing framework provides several extensions on top of Python’s unittest.TestCase

base class. These include a test client52 for making dummy Web browser requests, several

Django-specific additional assertions53, and four test case classes: SimpleTestCase54, TestCase55,

TransactionTestCase56, and LiveServerTestCase57.

Generally speaking, SimpleTestCase is used when a database is unnecessary, while TestCase

is used when you want to test the database. TransactionTestCase is helpful to test database

transactions58 directly while LiveServerTestCase launches a live server thread for testing with

browser-based tools like Selenium.

Note: Youmay have noticed that methods in unittest and django.test are written in camelCase

rather than the more Pythonic snake_case pattern. The reason is that unittest is based on the

jUnit testing framework from Java, which uses camelCase, so when Python added unittest, it

came along with camelCase naming.

If you look within our pages app, Django already provided a tests.py file we can use. Since no

database is involved in our project, we will import SimpleTestCase at the top of the file. For our

first tests, we’ll check that the two URLs for our website, the Homepage and About page, return

HTTP 200 status codes, the standard response for a successful HTTP request.

50https://docs.python.org/3/library/unittest.html#unittest.TestCase
51https://docs.python.org/3/library/unittest.html#assert-methods
52https://docs.djangoproject.com/en/5.0/topics/testing/tools/#the-test-client
53https://docs.djangoproject.com/en/5.0/topics/testing/tools/#assertions
54https://docs.djangoproject.com/en/5.0/topics/testing/tools/#simpletestcase
55https://docs.djangoproject.com/en/5.0/topics/testing/tools/#testcase
56https://docs.djangoproject.com/en/5.0/topics/testing/tools/#transactiontestcase
57https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.LiveServerTestCase
58https://docs.djangoproject.com/en/5.0/topics/db/transactions/

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#assert-methods
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#the-test-client
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#assertions
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#simpletestcase
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#testcase
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#transactiontestcase
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.LiveServerTestCase
https://docs.djangoproject.com/en/5.0/topics/db/transactions/
https://docs.djangoproject.com/en/5.0/topics/db/transactions/
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#assert-methods
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#the-test-client
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#assertions
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#simpletestcase
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#testcase
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#transactiontestcase
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.LiveServerTestCase
https://docs.djangoproject.com/en/5.0/topics/db/transactions/

Chapter 3: Personal Website 65

Code

pages/tests.py
from django.test import SimpleTestCase

class HomepageTests(SimpleTestCase):
def test_url_exists_at_correct_location(self):

response = self.client.get("/")
self.assertEqual(response.status_code, 200)

class AboutpageTests(SimpleTestCase):
def test_url_exists_at_correct_location(self):

response = self.client.get("/about/")
self.assertEqual(response.status_code, 200)

To run the tests, quit the server with Control+c and type python manage.py test on the

command line to run them.

Shell

(.venv) $ python manage.py test
Found 2 test(s).
System check identified no issues (0 silenced).
..
--
Ran 2 tests in 0.003s

OK

If you see an error such as AssertionError: 301 != 200, you likely forgot to add the trailing

slash to "/about" above. The web browser knows to add a slash if not provided automatically,

but that causes a 301 redirect, not a 200 success response!

Git and GitHub

It’s time to track our changes with Git and push them to GitHub. We’ll start by initializing our

directory and checking the status of our changes.

Chapter 3: Personal Website 66

Shell

(.venv) $ git init
(.venv) $ git status

We learned in the last chapter that by creating a .gitignore file, we can instruct Git to

ignore certain files and directories. We will include the .venv directory containing our virtual

environments. But we will also ignore the __pycache__ directory, which contains bytecode

compiled and ready to be executed, and the database itself, db.sqlite3. In addition to being

quite large, a file-based database included in source control poses a security risk. It is common to

have separate levels of access to a project amongst a large team. Often, every developer can view

the source code since anymistakes can be quickly rolled back and changed with Git. Rolling back

changes to a production database is considerably more difficult, andmost developers don’t need

access to it so long as they have a local or testing database available. Thus, it is a best practice to

keep your database access separate from your source code, even with file-based databases like

SQLite, so we will do that here. Create a new .gitignore file and add the following three lines:

.gitignore

.venv/
__pycache__/
db.sqlite3

Run git status again to confirm these three files are being ignored.Wewant a record of installed

packages in our virtual environment, which we can do by creating a requirements.txt file.

Shell

(.venv) $ pip freeze > requirements.txt

Run git status one final time to confirm that the newly created requirements.txt file is visible.

Then, add all intended files and directories and include an initial commit message.

Chapter 3: Personal Website 67

Shell

(.venv) $ git status
(.venv) $ git add -A
(.venv) $ git commit -m "initial commit"

Over on GitHub create a new repo59 called “personal-website” and make sure to select the

“Private” radio button. Then click on the “Create repository” button.

On the next page, scroll down to where it says “…or push an existing repository from the

command line.” Copy and paste the two commands there into your terminal.

It should look like the below, albeit instead of wsvincent as the username, it will be your GitHub

username.

Shell

(.venv) $ git remote add origin https://github.com/wsvincent/personal-website.git
(.venv) $ git branch -M main
(.venv) $ git push -u origin main

Conclusion

Congratulations on building your second Django website. The complete source code for this

chapter is available on GitHub60 if you need a reference. Although the website is quite basic, we

have explored several fundamental concepts, including function-based views, templates, URL

dispatchers, and testing.We also used Git again, created requirements.txt and .gitignore files,

and pushed our code to GitHub for the first time. With this foundation in place, we can move

more quickly to the next chapter, where we will build a Company website using class-based

views, template inheritance, and even more testing.

59https://github.com/new
60https://github.com/wsvincent/djangoforbeginners

https://github.com/new
https://github.com/wsvincent/djangoforbeginners
https://github.com/new
https://github.com/wsvincent/djangoforbeginners

Chapter 4: Company Website

In this chapter, we will build our third project, a Company Website, while learning more about

templates, introducing class-based views, and integrating more advanced testing. This is the

final project before we turn to the database and Django models, so it is a chance to reinforce our

past learnings and explore what the three other parts of Django–views, URLs, and templates–can

do.

Initial Set Up

Our initial setup should start to feel familiar now and contains the following steps:

• make a new directory for our code called company and navigate into it

• create a new virtual environment called .venv and activate it

• install Django and Black

• create a new Django project called django_project

• create a new app called pages

On the command line, ensure you’re not working in an existing virtual environment. If there is

text before the command line prompt–either > on Windows or % on macOS–then you are! Make

sure to type deactivate to leave it.

Within a new command line shell, navigate to the code folder on the desktop, create a new folder

called company, change directories into it, and activate a new Python virtual environment called

.venv.

Chapter 4: Company Website 69

Shell

Windows
$ cd onedrive\desktop\code
$ mkdir company
$ cd company
$ python -m venv .venv
$.venv\Scripts\Activate.ps1
(.venv) $

macOS
$ cd ~/desktop/code
$ mkdir company
$ cd company
$ python3 -m venv .venv
$ source .venv/bin/activate
(.venv) $

Next, install Django and Black, create a new project called django_project, and create a new app

called pages. We’ve called all our apps “pages” because they have been used for relatively static

pages. In future projects, we will populate our pages from the database, and the app names will

reflect that new dynamic.

Shell

(.venv) $ python -m pip install django~=5.0.0
(.venv) $ python -m pip install black
(.venv) $ django-admin startproject django_project .
(.venv) $ python manage.py startapp pages

Remember that even though we added a new app, Django will not recognize it until explicitly

added to the INSTALLED_APPS settingwithin django_project/settings.py. Open your text editor

and add it to the bottom now:

Chapter 4: Company Website 70

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"pages", # new

]

Initialize the database with migrate and start the local web server with runserver.

Shell

(.venv) $ python manage.py migrate
(.venv) $ python manage.py runserver

Then navigate to http://127.0.0.1:8000/ to see the Django welcome page.

Project-Level Templates

We previously saw that Django expects template files to be located within an app in a directory

called templates and that it was a best practice to namespace this further by adding the directory

name again. In other words, template files for a pages app would be located in a directory at

pages/templates/pages/.

However, many Django developers favor another approach: creating a single project-level

templates directory and placing all templates within it. This makes finding and updating all the

templates in one location easier. By tweaking our django_project/settings.py file, we can also

tell Django to look in this directory for templates.

First, quit the running server with the Control+c command. Then, create a directory called

templates.

Chapter 4: Company Website 71

Shell

(.venv) $ mkdir templates

Next, we need to update django_project/settings.py to tell Django where our new templates

directory is. This requires a one-line change to the "DIRS" configuration under TEMPLATES.

Code

django_project/settings.py
TEMPLATES = [
{
...

"DIRS": [BASE_DIR / "templates"], # new
...
},
]

We’ll use that approach to organizing templates for the rest of the book. Create a new file called

home.html within the templates directory. You can do this within your text editor: in Visual

Studio Code, go to the top left of your screen, click “File,” and then “New File.” Make sure to

name and save the file in the correct location.

For now, the home.html file will have a simple headline.

Code

<!-- templates/home.html -->
<h1>Company Homepage</h1>

Our template is complete! The next step is to configure our URL and view files.

Function-Based View and URL

It is entirely up to the developer whether to write the view first or the URLs. Ultimately, we need

both to display our web page, so deciding the execution order becomes a personal preference

over time. In this instance, we will start with the view in the pages app.

Chapter 4: Company Website 72

Code

pages/views.py
from django.shortcuts import render

def home_page_view(request): # new
return render(request, "home.html")

This code should look familiar from the previous chapter.We use the render() shortcut function,

which is imported at the top. Then we create our view, home_page_view, and name its first

parameter–the HttpRequest object–as request. We return the request object and specify the

proper template file, home.html.

Next are the views, both the project-level urls.py file, which serves as our website’s entry point,

and the app-specific urls.py file, which has the specific route and view for the home page.

The django_project/urls.py file is the initial entry point for all URL requests to our project. We

must import the include function at the top and then use it to include the URL routes from the

pages application, which will be set to the empty string of "".

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
path("admin/", admin.site.urls),
path("", include("pages.urls")), # new

]

The app-level pages/urls.py file imports the view, home_page_view, and sets it to the URL path

of the empty string, "".

Chapter 4: Company Website 73

Code

pages/urls.py
from django.urls import path

from .views import home_page_view

urlpatterns = [
path("", home_page_view),

]

Start up the development web server using the runserver command.

Shell

(.venv) $ python manage.py runserver

If you navigate http://127.0.0.1:8000/, the home page is now visible.

FBV Company Homepage

Easy enough, right? So far, the only new concept introduced is the project-level templates

directory.

Template Context, Tags, and Filters

Let’s add a template context to our homepage view and then play around with some of

Django’s built-in tags and filters61. A tag performs more complex operations such as loops,

conditionals, and template inheritance. At the same time, a filter is used to performmore simple

transformations that modify the display of variables, such as formatting dates, truncating text,

61https://docs.djangoproject.com/en/5.0/ref/templates/builtins/

https://docs.djangoproject.com/en/5.0/ref/templates/builtins/
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/

Chapter 4: Company Website 74

or converting strings to uppercase. There are far too many tags and filters to memorize; it is

helpful to know that for almost any content display, there are a host of native solutions.

A template context has a dictionary structure of keys and values. For demonstration purposes,

we can add two: an inventory_list of three widgets and a greeting text string that deliberately

mixes up upper and lowercase letters.

Code

pages/views.py
from django.shortcuts import render

def home_page_view(request):
context = { # new

"inventory_list": ["Widget 1", "Widget 2", "Widget 3"],
"greeting": "THAnk you FOR visitING.",

}
return render(request, "home.html", context)

Update the home.html template file with the following code. The now62 tag displays the current

date and/or time using DATE_FORMAT63, one of several display options. Next, display the

number of items in the inventory_list using the length64 filter, which works on both strings

and lists.

Then, loop over each item in the for65 tag. The general syntax is {% for item in item_list

%} where item is a variable name representing the current item in the loop and item_list is

the sequence we are looping over. It is also critical to include an {% endfor %} tag to conclude

any for loop. In this case, the sequence is named inventory_list. We could name the variable

anything we like, but a description such as item is a common choice that makes the code easier

to reason about. Finally, we use the title66 filter to convert a string into titlecase where eachword

starts with an uppercase letter followed by lowercase letters.

62https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#now
63https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-DATE_FORMAT
64https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#length
65https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#for
66https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#title

https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#now
https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-DATE_FORMAT
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#length
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#for
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#title
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#now
https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-DATE_FORMAT
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#length
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#for
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#title

Chapter 4: Company Website 75

Code

<!-- templates/home.html -->
<h1>Company Homepage</h1>
<p>The current date and time is: {% now "DATETIME_FORMAT" %}</p>
<p>There are {{ inventory_list|length }} items of inventory.

{% for item in inventory_list %}
{{ item }}
{% endfor %}

<p>{{ greeting| title }}</p>
{% comment %}Add more content here!{% endcomment %}

The local web server should still be running in the background with the runserver command, so

you only need to refresh the web page to see the changes.

Company Homepage with Context

The goal here is not to overwhelm you with many new Django features you need to memorize.

There are way too many tags and filters to remember. Instead, it is to emphasize that for almost

any web development task you have in mind, Django probably has a built-in solution, which is

why the official documentation is indispensable and a daily part of development for a professional

Django developer.

Chapter 4: Company Website 76

Class-Based Views and Generic Class-Based Views

The closest thing to a religious debate within the Django community concerns function-based

views–what we’ve been working with so far–and class-based views. Early versions of Django only

shipped with function-based views, which are arguably simpler to understand than their class-

based counterparts because they mimic the HTTP request/response cycle. This book starts off

using only function-based views for this very reason.

Function-based views do have their drawbacks. They lack an easymeans of inheritance, meaning

developers must repeat the same code snippets repeatedly in each view. That violates Django’s

general DRY (Don’t Repeat Yourself) approach. But even when not repeating the same code,

function-based views typically become lengthy in real-world projects and, therefore, difficult

to reason about. It is common to see views with ten, twenty, or even more lines of logic, which

becomes difficult to reason about.

Generic function-based views were introduced early in Django’s development to abstract

common patterns and avoid code duplication. Examples include:

• Write a view that displays a single template (as we’ve just done here)

• Write a view that lists all objects in a database model.

• Write a view that displays only one detailed item from a model.

• Write a view to create, update, or delete an object

The problem with generic function-based views was that there was no easy way to extend or

customize them67. As projects grow, this becomes more and more of an issue.

Django added class-based and generic class-based views to help with code reusability while

retaining function-based views. Classes are a fundamental part of Python that rely on object-

oriented programming (OOP) and inheritance, so one class can inherit attributes and methods

from another. That means we don’t have to include all the logic for a view in one place but

rather can abstract common patterns and then customize or extend them as needed. A thorough

discussion of Python classes and OOP is beyond the scope of this book. Still, if you need an

67https://docs.djangoproject.com/en/5.0/topics/class-based-views/intro/

https://docs.djangoproject.com/en/5.0/topics/class-based-views/intro/
https://docs.djangoproject.com/en/5.0/topics/class-based-views/intro/
https://docs.djangoproject.com/en/5.0/topics/class-based-views/intro/

Chapter 4: Company Website 77

introduction or refresher, I suggest reviewing the official Python docs68, which have an excellent

tutorial on classes and their usage.

Once you have used generic class-based views for a while, they become elegant and efficient

ways to write code. You can often modify a single method on one to do custom behavior rather

than rewriting everything from scratch, which makes it easier to understand someone else’s

code. However, this comes at the cost of complexity and requires a leap of faith because it takes

a long time to understand how they work under the hood. An entire website, Classy Class-Based

Views69, is dedicated to helping Django developers decipher generic class-based views.

The Django codebase itself was shifted to primarily class-based and generic class-based views.

Generic function-based views were deprecated in Django 1.370 and removed entirely in version

1.5.

The result of these changes to Django over the years is that there are now three different

ways to write a view in Django: function-based, class-based, or generic class-based. This is

understandably very confusing to beginners.

Earlier editions of this book focused entirely on generic class-based views, but this version

includes both. A Django developer needs to understand how each approach works, even if they

will undoubtedly have a personal preference over time.

TemplateView

Let’s create a second web page for our Company site, this time using TemplateView71, a generic

class-based view. This will be for an about page that also takes advantage of the template context

and the Django Templating Language.

At the top of the views.py file, import TemplateView from the django.views.generic mod-

ule. Then create a class, AboutPageView, that extends TemplateView and specifies a template,

68https://docs.python.org/3.12/tutorial/classes.html
69https://ccbv.co.uk/
70https://docs.djangoproject.com/en/5.0/releases/1.3/#function-based-generic-views
71https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.

TemplateView

https://docs.python.org/3.12/tutorial/classes.html
https://ccbv.co.uk/
https://ccbv.co.uk/
https://docs.djangoproject.com/en/5.0/releases/1.3/#function-based-generic-views
https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.TemplateView
https://docs.python.org/3.12/tutorial/classes.html
https://ccbv.co.uk/
https://docs.djangoproject.com/en/5.0/releases/1.3/#function-based-generic-views
https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.TemplateView
https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.TemplateView

Chapter 4: Company Website 78

about.html. In Python, the convention for naming classes is to use “CamelCase,” where the first

letter in a word is capitalized, and there are no underscores between words.

Code

pages/views.py
from django.shortcuts import render
from django.views.generic import TemplateView # new

def home_page_view(request):
context = {

"inventory_list": ["Widget 1", "Widget 2", "Widget 3"],
"greeting": "THAnk you FOR visitING.",

}
return render(request, "home.html", context)

class AboutPageView(TemplateView): # new
template_name = "about.html"

Next, update the pages/urls.py file to display the new view. We import AboutPageView and set

a route to about/ while specifying AboutPageView as the view.

Code

pages/urls.py
from django.urls import path

from .views import home_page_view, AboutPageView # new

urlpatterns = [
path("about/", AboutPageView.as_view()), # new
path("", home_page_view),

]

Note the addition of the as_view()72 method that returns a callable view. The only fundamental

difference in configuring URLs for class-based versus function-based views is that this method

must be added.
72https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.View.as_

view

https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.View.as_view
https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.View.as_view
https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.View.as_view

Chapter 4: Company Website 79

The last step is creating our template file, about.html. With your text editor, add this new file

within the existing templates directory with the following code:

Code

<!-- templates/about.html -->
<h1>Company About Page</h1>

Now make sure the local server is running and navigate to 127.0.1:8000/about/ in your web

browser.

Company About Page

Easy enough, right?

get_context_data()

One of the most powerful, useful, and commonly used methods in Django is get_context_-

data()73. It is the recommended approach for updating the template context in a generic class-

based view. Let’s use it now to add context data to the About page.

73https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-simple/#django.views.generic.base.

ContextMixin.get_context_data

https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-simple/#django.views.generic.base.ContextMixin.get_context_data
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-simple/#django.views.generic.base.ContextMixin.get_context_data
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-simple/#django.views.generic.base.ContextMixin.get_context_data
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-simple/#django.views.generic.base.ContextMixin.get_context_data

Chapter 4: Company Website 80

Code

pages/views.py
...
class AboutPageView(TemplateView):

template_name = "about.html"

def get_context_data(self, **kwargs): # new
context = super().get_context_data(**kwargs)
context["contact_address"] = "123 Main Street"
context["phone_number"] = "555-555-5555"
return context

...

To begin with, we override the existing get_context_data()method. The first parameter is self,

and the second is **kwargs, allowing us to pass in keyword arguments. This is how we can add a

key/value to the context.

The next step is to set a variable called context with the existing value of our context. How do

we do that? Call super() on get_context_data and include any keyword arguments. Then we

add two keys, contact_address and phone_number, along with their corresponding values. The

last step is always to explicitly return the now-updated context.

To render context variables in our template, we use double brackets, {{ }}.

Code

<!-- templates/about.html -->
<h1>Company About Page</h1>
<p>The company address is {{ contact_address }} and the phone number is
{{ phone_number }}.</p>

Refresh the About page in your web browser to see this information displayed.

Company About Page with Context

Chapter 4: Company Website 81

Using generic class-based views might seem unnecessary at the moment, but their true power

will become apparent in the next chapter when we start working with a database.

Template Inheritance

This chapter is all about templates and views.We’ve already covered a lot of information: template

context, template tags and filters, and class-based views. However, one more powerful feature

of templates is that they can be extended.

If you think about most websites, the same content appears on every page (header, footer, etc.).

Wouldn’t it be nice if we, as developers, could have one canonical place for our header code that

all other templates would inherit? Well, we can!

Within the templates directory, create a base.html file containing a header with links to our

home page and about pages. This is our parent template, which all other child templates will

inherit from. To define what areas can be overridden, we’ll use block74 tags in the syntax {%

block content %} and {% endblock %}. Anything within the block tags can be overridden in a

child template.

Code

<!-- templates/base.html -->
<header>
Home |
About
</header>

{% block content %}{% endblock %}

The extends75 tag allows us to establish parent/child relationships between our templates by

specifying the parent template. Add it to the top of the home.html and about.html templates.

Then define our child template content with {% block content %} and {% endblock %} tags.

74https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#block
75https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#extends

https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#block
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#extends
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#block
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#extends

Chapter 4: Company Website 82

Code

<!-- templates/home.html -->
{% extends "base.html" %}

{% block content %}
<h1>Company Homepage</h1>
<p>The current date and time is: {% now "DATETIME_FORMAT" %}</p>
<p>There are {{ inventory_list|length }} items of inventory.

{% for item in inventory_list %}
{{ item }}
{% endfor %}

<p>{{ greeting| title }}</p>
{% comment %}Add more content here!{% endcomment %}
{% endblock %}

Code

<!-- templates/about.html -->
{% extends "base.html" %}
{% block content %}
<h1>Company About Page</h1>
<p>The company address is {{ contact_address }} and the phone number is
{{ phone_number }}.</p>

{% endblock %}

Refresh each web page in your browser to see the results:

Chapter 4: Company Website 83

Company Home Page with Base Template

Company About Page with Base Template

Each page now contains the base.html header with navigation links for Home and About pages.

Named URLs

Experienced web developers may have noticed a problem with our current approach to page

links.We have hardcodedURL paths in the views.py and urls.py files. In each place, we specified

/ for the Homepage and about/ for the About page. What happens if we change the URL path in

one place but not another? We’ll get a 404 error for a page not found.

Django takes seriously the idea of having a canonical location for logic. In this case, we want

to reference a URL and its associated view once and only once. To do that, we can add a

Chapter 4: Company Website 84

name76 to our URLs. The path()77 function accepts the following arguments: path(route, view,

kwargs=None, name=None). By default, kwargs and name are set to None, but we can update name

here.

Code

pages/urls.py
from django.urls import path

from .views import home_page_view, AboutPageView

urlpatterns = [
path("about/", AboutPageView.as_view(), name="about"), # new
path("", home_page_view, name="home"), # new

]

Now, whenever we want to refer to a specific URL path, we can do so using the named URL in

our template via the built-in url78 template tag. Update the base.html file with the code below.

Code

<!-- templates/base.html -->
<header>
Home |
About
</header>

{% block content %}{% endblock %}

If you refresh your website in the browser, both pages and their links work as before. The URL

path is now set in only one location–in the urls.py file. Named URLs make your projects easier

to maintain and modify, as changes to URL patterns don’t require changes in multiple places in

our code. They are a best practice that should be used in all Django projects.

76https://docs.djangoproject.com/en/5.0/topics/http/urls/#naming-url-patterns
77https://docs.djangoproject.com/en/5.0/ref/urls/#path
78https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#url

https://docs.djangoproject.com/en/5.0/topics/http/urls/#naming-url-patterns
https://docs.djangoproject.com/en/5.0/ref/urls/#path
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#url
https://docs.djangoproject.com/en/5.0/topics/http/urls/#naming-url-patterns
https://docs.djangoproject.com/en/5.0/ref/urls/#path
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#url

Chapter 4: Company Website 85

Tests

In the previous chapter, we wrote a single unit test for each webpage, checking that it returned

an HTTP 200 code. Let’s do that again as a quick recap before adding more robust tests to our

website. Update the pages/tests.py file with the code below:

Code

pages/tests.py
from django.test import SimpleTestCase

class HomepageTests(SimpleTestCase):
def test_url_exists_at_correct_location(self):

response = self.client.get("/")
self.assertEqual(response.status_code, 200)

class AboutpageTests(SimpleTestCase):
def test_url_exists_at_correct_location(self):

response = self.client.get("/about/")
self.assertEqual(response.status_code, 200)

Then, run the tests by quitting the local web server with Control+c and typing python manage.py

test on the command line to run them.

Shell

(.venv) $ python manage.py test
Found 2 test(s).
System check identified no issues (0 silenced).
..
--
Ran 2 tests in 0.003s

OK

So far, so good. What’s changed in the Company Website versus the previous chapter’s Personal

Website? We now have URL names for each URL route, so we should check that they work as

expected. We can use the handy Django utility function reverse79. Instead of going to a URL path,

79https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#reverse

https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#reverse
https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#reverse

Chapter 4: Company Website 86

it looks for the URL name. It is generally a bad idea to hardcode URLs, especially in templates.

We can avoid this by using reverse. See a further explanation here in the docs80, but we will use

reversemore in coming chapters.

Open the existing pages/tests.py file in your text editor and at the following code:

Code

pages/tests.py
from django.test import SimpleTestCase
from django.urls import reverse # new

class HomepageTests(SimpleTestCase):
def test_url_exists_at_correct_location(self):

response = self.client.get("/")
self.assertEqual(response.status_code, 200)

def test_url_available_by_name(self): # new
response = self.client.get(reverse("home"))
self.assertEqual(response.status_code, 200)

class AboutpageTests(SimpleTestCase):
def test_url_exists_at_correct_location(self):

response = self.client.get("/about/")
self.assertEqual(response.status_code, 200)

def test_url_available_by_name(self): # new
response = self.client.get(reverse("about"))
self.assertEqual(response.status_code, 200)

At the top, we have imported SimpleTestCase since we are not working with a database and

then the reverse function. There are two classes of tests corresponding to each web page.

HomepageTests checks that the homepage at / returns a 200 status code and then checks that

calling reverse on the namedURLof “home” does the same. The pattern for both tests is repeated

for the About page in the AboutpageTests class.

Run the tests to confirm that they work correctly.

80https://docs.djangoproject.com/en/5.0/topics/http/urls/#reverse-resolution-of-urls

https://docs.djangoproject.com/en/5.0/topics/http/urls/#reverse-resolution-of-urls
https://docs.djangoproject.com/en/5.0/topics/http/urls/#reverse-resolution-of-urls

Chapter 4: Company Website 87

Shell

(.venv) $ python manage.py test
Found 4 test(s).
System check identified no issues (0 silenced).
..
--
Ran 4 tests in 0.005s

OK

We have tested our URL locations and names but not our templates. Let’s make sure that the

correct templates, home.html and about.html, are used on each page and that they contain

the expected text of "<h1>Company Homepage</h1>" and "<h1>Company About Page</h1>"

respectively. We can use assertTemplateUsed81 and assertContains82 to achieve this.

Code

pages/tests.py
from django.test import SimpleTestCase
from django.urls import reverse

class HomepageTests(SimpleTestCase):
def test_url_exists_at_correct_location(self):

response = self.client.get("/")
self.assertEqual(response.status_code, 200)

def test_url_available_by_name(self):
response = self.client.get(reverse("home"))
self.assertEqual(response.status_code, 200)

def test_template_name_correct(self): # new
response = self.client.get(reverse("home"))
self.assertTemplateUsed(response, "home.html")

def test_template_content(self): # new
response = self.client.get(reverse("home"))
self.assertContains(response, "<h1>Company Homepage</h1>")

81https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.SimpleTestCase.

assertTemplateUsed
82https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.SimpleTestCase.assertContains

https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.SimpleTestCase.assertTemplateUsed
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.SimpleTestCase.assertContains
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.SimpleTestCase.assertTemplateUsed
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.SimpleTestCase.assertTemplateUsed
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.SimpleTestCase.assertContains

Chapter 4: Company Website 88

class AboutpageTests(SimpleTestCase):
def test_url_exists_at_correct_location(self):

response = self.client.get("/about/")
self.assertEqual(response.status_code, 200)

def test_url_available_by_name(self):
response = self.client.get(reverse("about"))
self.assertEqual(response.status_code, 200)

def test_template_name_correct(self): # new
response = self.client.get(reverse("about"))
self.assertTemplateUsed(response, "about.html")

def test_template_content(self): # new
response = self.client.get(reverse("about"))
self.assertContains(response, "<h1>Company About Page</h1>")

Run the tests one last time to check our new work. Everything should pass.

Shell

(.venv) $ python manage.py test
Found 8 test(s).
System check identified no issues (0 silenced).
..
--
Ran 8 tests in 0.006s

OK

Experienced programmersmay look at our testing code and note that it is repetitive. For example,

we set the response each time for all eight tests. Generally, following DRY (Don’t Repeat Yourself)

coding is a good idea, but unit tests work best when they are self-contained and highly verbose.

As a test suite expands, combiningmultiple assertions into a smaller number of tests might make

more sense for performance reasons.

We’ll do much more with testing in the future, especially once we start working with databases.

For now, it’s important to see how easy and important it is to add tests every time we add new

functionality to our Django project.

Chapter 4: Company Website 89

Git and GitHub

It’s time to track our changes with Git and push them to GitHub. We’ll start by initializing our

directory and checking the status of our changes.

Shell

(.venv) $ git init
(.venv) $ git status

Then, create a .gitignore file instructing Git on what not to track. We will focus on three

areas: the .venv directory with virtual environments, the __pycache__ directory with compiled

bytecode, and the database file, db.sqlite3.

.gitignore

.venv/
__pycache__/
db.sqlite3

The next step is to create a requirements.txt file listing the contents of our virtual environment.

Shell

(.venv) $ pip freeze > requirements.txt
(.venv) $ git status

The final step is to run git status again to confirm that requirements.txt is included, but

the three items in the .gitignore file are ignored. Then, add all intended files and directories

accompanied by an initial commit message.

Chapter 4: Company Website 90

Shell

(.venv) $ git status
(.venv) $ git add -A
(.venv) $ git commit -m "initial commit"

Over onGitHub create a new repo83 called company-website andmake sure to select the “Private”

radio button. Then click on the “Create repository” button.

On the next page, scroll down to where it says “���r push an existing repository from the

command line.” Copy and paste the two commands there into your terminal.

It should look like the below, albeit instead of wsvincent as the username, it will be your GitHub

username.

Shell

(.venv) $ git remote add origin https://github.com/wsvincent/company-website.git
(.venv) $ git branch -M main
(.venv) $ git push -u origin main

Conclusion

Congratulations on building and deploying your third Django project! This time, we used both

function-based views and generic class-based views to build out our website. We incorporated

template inheritance, named URLs, and added more advanced tests. The complete source code

for this chapter is available on GitHub84 if you need a reference. In the next chapter, we’ll move

on to our first database-backed project, a Message Board website, and see where Django truly

shines.
83https://github.com/new
84https://github.com/wsvincent/djangoforbeginners

https://github.com/new
https://github.com/wsvincent/djangoforbeginners
https://github.com/new
https://github.com/wsvincent/djangoforbeginners

Chapter 5: Message Board Website

In this chapter, we will create our first database-backed website, a Message Board application.

We will learn about relational databases, write a Django model, perform queries, and manipulate

using the powerful built-in admin interface. We will also write function-based and class-based

views before ending with more advanced tests to ensure everything works properly.

Initial Set Up

Since we’ve already set up several Django projects in the book, we can quickly run through the

standard commands to begin a new one. We need to do the following:

• make a new directory for our code called message-board on the desktop

• set up a new Python virtual environment and activate it

In a new command line console, enter the following commands:

Shell

Windows
$ cd onedrive\desktop\code
$ mkdir message-board
$ cd message-board
$ python -m venv .venv
$.venv\Scripts\Activate.ps1
$ (.venv)

macOS
$ cd ~/desktop/code
$ mkdir message-board
$ cd message-board
$ python3 -m venv .venv
$ source .venv/bin/activate
$ (.venv)

Chapter 5: Message Board Website 92

Then, finish the setup by performing the following actions:

• install Django and Black in the new virtual environment

• create a new project called django_project

• create a new app called posts

Shell

(.venv) $ python -m pip install django~=5.0.0
(.venv) $ python -m pip install black
(.venv) $ django-admin startproject django_project .
(.venv) $ python manage.py startapp posts

As a final step, update django_project/settings.py to alert Django to the new app, posts, by

adding it to the bottom of the INSTALLED_APPS section.

Code

django_project/settings.py
INSTALLED_APPS = [
"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"posts", # new
]

Then, execute the migrate command to create an initial database based on Django’s default

settings.

Shell

(.venv) $ python manage.py migrate

A db.sqlite3 file is now present with our local database and Django default tables. Spin up our

local server to confirm everything works correctly.

Chapter 5: Message Board Website 93

Shell

(.venv) $ python manage.py runserver

In your web browser, navigate to http://127.0.0.1:8000/ to see the familiar Django welcome

page.

A major design philosophy of Django, which you will see repeatedly in this book, is that it allows

for customization. For example, we don’t have to use port 8000 for local development. We could

change it to any other available port, such as 8080. Stop the server with Ctrl + c and restart it

by passing in the desired port number.

Shell

(.venv) $ python manage.py runserver 8080

If you refresh http://127.0.0.1/:8000/, you will see an error message, but switching to

http://127.0.0.1:8080/ displays our Hello, World! greeting.

Chapter 5: Message Board Website 94

Django Welcome Screen Port 8080

We won’t need to move off port 8000 in this book, but it is only a command-line customization

away if you need a different port number in a more complex Django project.

Databases

Before implementing our Message Board model, it is worth reviewing how databases, ORMs, and

Django work together. A database is a place to store and access different types of data, and there

are two main types of databases: relational and non-relational.

A relational database stores information in tables containing columns and rows, roughly anal-

Chapter 5: Message Board Website 95

ogous to an Excel spreadsheet. The columns define what information can be stored; the rows

contain the actual data. Frequently, data in separate tables have some relation to each other,

hence the term “relational database” to describe databases with this structure of tables, columns,

and rows.

SQL (Structured Query Language) is typically used to interact with relational databases to

performbasic CRUD (Create, Read, Update, Delete) operations and define the type of relationship

(like a many-to-one relationship, for example. We’ll learn more about these shortly.).

A non-relational database is any database that doesn’t use the tables, fields, rows, and columns

inherent in relational databases to structure its data: examples include document-oriented, key-

value, graph, and wide-column.

Relational databases are best when data is consistent and structured and relationships between

entities are essential. Non-relational databases have advantages when data is not structured,

needs to be flexible in size or shape, and is open to change in the future. Relational databases

have been around far longer and are more widely used, while many non-relational databases

were designed recently for specific use in the cloud.

Database design and implementation is an entire field of computer engineering that is very deep

and quite interesting but far beyond the scope of this book. The important takeaway for our

purposes is that these two types of databases exist. Still, Django only has built-in support for

relational databases, so we will focus on that.

Django’s ORM

An ORM (Object-Relational Mapper) is a powerful programming technique that makes working

with data and relational databases much easier. In the case of Django, its ORM means we can

write Python code to define database models; we don’t have to write raw SQL ourselves. And

we don’t have to worry about subtle differences in how each database interprets SQL. Instead,

the Django ORM supports five relational databases: SQLite, PostgreSQL, MySQL, MariaDB, and

Oracle. It also comes with support for migrations, which provides a way to track and sync

database changes over time. In sum, the Django ORM saves developers a tremendous amount

of time, which is one of the major reasons why Django is so efficient.

Chapter 5: Message Board Website 96

While the ORM abstracts much of the work, we still need a basic understanding of relational

databases to implement them correctly. For example, before writing any actual code, let’s look

at structuring the data in our Message Board model. We will have only one table called “Post”

and a single field, “text,” containing the contents of a message. If we drew this out as a simple

schema, it would look something like this:

Post Schema

Post

TEXT

The actual database table with rows of actual messages would look like this:

Post Database Table

Post

TEXT
My first message board post.
A 2nd post!
A third message.

Database Model

Now that we know how our database table should look, let’s use Django’s ORM to define it using

Python. Open the posts/models.py file and look at the default code which Django provides:

Code

posts/models.py
from django.db import models

Create your models here

Django imports a module, models, to help us build new database models that will “model” the

characteristics of the data in our database. For each database model we want to create, the

approach is to subclass (meaning to extend) django.db.models.Model and then add our fields.

Type in the following code, which we will review below:

Chapter 5: Message Board Website 97

Code

posts/models.py
from django.db import models

class Post(models.Model): # new
text = models.TextField()

We’ve created a new database model called Post, which has the database field text. We’ve also

specified the type of content it will hold, TextField(). Django provides many model fields85

supporting common types of content such as characters, dates, integers, emails, and so on. We

will explore these later. For now, we have written our first model!

Activating Models

After creating a model, the next step is activating it. From now on, whenever we make or modify

an existing model, we’ll need to update Django in a two-step process:

1. First, we create amigrations file with the makemigrations command.Migration files record

any changes to the database models, which means we can track changes over time and

debug errors as necessary.

2. Second,we build the databasewith the migrate command,which executes the instructions

in our migrations file.

Ensure the local server is stopped by typing Control+c on the command line and then run the

commands python manage.py makemigrations posts and python manage.py migrate.

85https://docs.djangoproject.com/en/5.0/ref/models/fields/

https://docs.djangoproject.com/en/5.0/ref/models/fields/
https://docs.djangoproject.com/en/5.0/ref/models/fields/

Chapter 5: Message Board Website 98

Shell

(.venv) $ python manage.py makemigrations posts
Migrations for 'posts':
posts/migrations/0001_initial.py
- Create model Post

(.venv) $ python manage.py migrate
Operations to perform:
Apply all migrations: admin, auth, contenttypes, posts, sessions
Running migrations:
Applying posts.0001_initial... OK

You don’t have to include a name after makemigrations. If you just run makemigrations without

specifying an app, amigrations filewill be created for all available changes throughout theDjango

project. That is fine in a small project like ours with only a single app, but most Django projects

have more than one app! Therefore, if you made model changes in multiple apps, the resulting

migrations file would include all those changes: not ideal! Migration files should be as small

and concise as possible, making it easier to debug in the future or even roll back changes as

needed. Therefore, as a best practice, adopt the habit of always including the name of an app

when executing the makemigrations command!

Django Admin

One of Django’s killer features is its robust admin interface that visually interacts with data. It

came about because Django started86 as a newspaper CMS (Content Management System). The

idea was that journalists could write and edit their stories in the admin without needing to touch

“code.” Over time, the built-in admin app has evolved into a fantastic, out-of-the-box tool for

managing all aspects of a Django project.

To use the Django admin, we must first create a superuserwho can log in. In your command line

console, type python manage.py createsuperuser and respond to the prompts for a username,

email, and password:

86https://docs.djangoproject.com/en/5.0/faq/general/

https://docs.djangoproject.com/en/5.0/faq/general/
https://docs.djangoproject.com/en/5.0/faq/general/

Chapter 5: Message Board Website 99

Shell

(.venv) $ python manage.py createsuperuser
Username (leave blank to use 'wsv'): wsv
Email: will@learndjango.com
Password:
Password (again):
Superuser created successfully.

When you type your password, it will not appear visible in the command line console for security

reasons. For local development, I often use testpass123. Restart the Django server with python

manage.py runserver and, in your web browser, go to http://127.0.0.1:8000/admin/. You

should see the login screen for the admin:

Admin Login Page

Log in by entering the username and password you just created. You will see the Django admin

homepage next:

Chapter 5: Message Board Website 100

Admin Homepage

Django has impressive support formultiple languages, so if you’d like to see the admin, forms, and

other default messages in a language other than English, try adjusting the LANGUAGE_CODE87

configuration in django_project/settings.py which is automatically set to American English,

en-us.

But where is our posts app since it is not displayed on the main admin page? Just as we must

explicitly add new apps to the INSTALLED_APPS config, we must also update an app’s admin.py

file for it to appear in the admin.

In your text editor, open up posts/admin.py and add the following code to display the Postmodel.

Code

posts/admin.py
from django.contrib import admin

from .models import Post

admin.site.register(Post)

Django knows it should display our posts app and its database model Post on the admin page. If

you refresh your browser, you’ll see that it appears:

87https://docs.djangoproject.com/en/5.0/ref/settings/#language-code

https://docs.djangoproject.com/en/5.0/ref/settings/#language-code
https://docs.djangoproject.com/en/5.0/ref/settings/#language-code

Chapter 5: Message Board Website 101

Admin Updated Homepage

Let’s create our first message board post for our database. Click the + Add button opposite Posts

and enter your content in the Text form field.

Admin New Entry

Then click the “Save” button to redirect you to the main Post page. However, if you look closely,

there’s a problem: our new entry is called “Post object (1)”, which isn’t very descriptive!

Chapter 5: Message Board Website 102

Admin Posts List

Let’s change that. Within the posts/models.py file, add a new method called __str__, which

provides a human-readable representation88 of the model. In this case, we’ll have it display the

first 50 characters of the text field.

Code

posts/models.py
from django.db import models

class Post(models.Model):
text = models.TextField()

def __str__(self): # new
return self.text[:50]

If you refresh your Admin page in the browser, you’ll see that it now represents our database

entry in a much more descriptive and helpful way.

88https://docs.djangoproject.com/en/5.0/ref/models/instances/#str

https://docs.djangoproject.com/en/5.0/ref/models/instances/#str
https://docs.djangoproject.com/en/5.0/ref/models/instances/#str

Chapter 5: Message Board Website 103

Admin Readable Post

Much better! It’s a best practice to add __str__() methods to all your models to improve their

readability.

Let’s add two more entries using the same method, so we have three total to work with in the

next section. You can use the “Add Post +” button in the upper right corner.

Chapter 5: Message Board Website 104

Admin with Three Posts

Function-Based View

To display our message board posts on the homepage we have to wire up a view, template, and

URL. This pattern should start to feel familiar now.

Let’s begin with the view. We’ll initially write a function-based view and switch to a generic class-

based view. In the posts/views.py file, replace the default text and enter the Python code below:

Code

posts/views.py
from django.shortcuts import render
from .models import Post

def post_list(request):
posts = Post.objects.all()
return render(request, "post_list.html", {"posts": posts})

On the first line, we import the render()89 shortcut function, which combines a template with

89https://docs.djangoproject.com/en/5.0/topics/http/shortcuts/#render

https://docs.djangoproject.com/en/5.0/topics/http/shortcuts/#render
https://docs.djangoproject.com/en/5.0/topics/http/shortcuts/#render

Chapter 5: Message Board Website 105

a context dictionary and returns an HttpResponse object. Then, we import our database model,

Post, from the models.py file.

We define a function, post_list, and name the request object “request” per Django convention.

Then, we set a variable, posts, to a database query containing all Post objects. Then we use

render() to return the request object, define the template as the second argument, and then

in the third argument, define a context dictionary called “posts” that matches the value of the

posts variable we set on the previous line.

Let’s examine Post.objects.all() in more detail as it is the first example of a Database query

via the Django ORM.

1. Post: This refers to our model class, which represents a table in the database where each

row corresponds to an instance of the Postmodel

2. objects: This is the default manager for the Post model. A manager90 provides a way to

interact with the database and perform queries. By default, Django adds a Manager named

“objects” to every Django model class.

3. all(): This is a method provided by the manager that returns a QuerySet containing all

instances of the Post model from the database. A QuerySet91 is a collection of database

queries to retrieve objects.

The QuerySet API reference92 is an invaluable resource in the official documentation that covers

all available methods. You are not expected to memorize all of these. Rather, the traditional

approach is to have a problem with querying data and then search for a built-in method. You

will likely find one already exists.

Templates and URLs

We already have a model and view, which means only a template and URL are left to configure.

Let’s start with the template. Create a new project-level directory called templates.

90https://docs.djangoproject.com/en/5.0/topics/db/managers/
91https://docs.djangoproject.com/en/5.0/ref/models/querysets/
92[QuerySet](https://docs.djangoproject.com/en/5.0/ref/models/querysets/)

https://docs.djangoproject.com/en/5.0/topics/db/managers/
https://docs.djangoproject.com/en/5.0/ref/models/querysets/
[QuerySet](https://docs.djangoproject.com/en/5.0/ref/models/querysets/)
https://docs.djangoproject.com/en/5.0/topics/db/managers/
https://docs.djangoproject.com/en/5.0/ref/models/querysets/
[QuerySet](https://docs.djangoproject.com/en/5.0/ref/models/querysets/)

Chapter 5: Message Board Website 106

Shell

(.venv) $ mkdir templates

Then, update the DIRS field in our django_project/settings.py file so Django can look in this

new templates directory.

Code

django_project/settings.py
TEMPLATES = [

{
"BACKEND": "django.template.backends.django.DjangoTemplates",
"DIRS": [BASE_DIR / "templates"], # new
"APP_DIRS": True,
...

},
]

In your text editor, create a new file called templates/post_list.html. Our template context

contains a dictionary called posts which we need to loop over via the for93 template tag. We’ll

create a variable called post and can then access the desired field we want to be displayed, text,

as post.text.

Code

<!-- templates/post_list.html -->
<h1>Message Board Homepage</h1>

{% for post in posts %}
{{ post.text }}
{% endfor %}

The last step is to set up our URLs. Let’s start with the django_project/urls.py file, where we

include our posts app and add include on the second line.

93https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#std:templatetag-for

https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#std:templatetag-for
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#std:templatetag-for

Chapter 5: Message Board Website 107

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
path("admin/", admin.site.urls),
path("", include("posts.urls")), # new

]

Then, in your text editor, create a new urls.py file within the posts app and update it like so:

Code

posts/urls.py
from django.urls import path
from .views import post_list

urlpatterns = [
path("", post_list, name="post_list"),

]

Restart the server with python manage.py runserver and navigate to our homepage, which lists

our message board posts.

Homepage with Three Posts

If you navigate to the Django admin and add or delete message board posts, the homepage will

be updated to reflect the changes.

Chapter 5: Message Board Website 108

ListView

In the previous chapter, we wrote a function-based view and then switched to the built-in

generic TemplateView94 to display a template file on our homepage. Listing out all items in

a database model is so common that a generic class-based view exists for this, too, called

ListView95. We will now switch over to it for educational purposes. There is no right or wrong

answer regarding function-based versus generic class-based views: it is a matter of preference.

In the posts/views.py file, comment out the existing code for our function-based view and add

new code for the class-based view implementation. Import on the top line ListView and then

create a ‘PostList’ class that extends it. We define the desiredmodel, Post, and then the template

name, post_list.html.

Code

posts/views.py
from django.shortcuts import render
from .models import Post

def post_list(request):
posts = Post.objects.all()
return render(request, "post_list.html", {"posts": posts})

from django.views.generic import ListView # new
from .models import Post

class PostList(ListView): # new
model = Post
template_name = "post_list.html"

The current template uses a context dictionary called posts. By default, ListView returns a

context variable called <model>_list, where <model> is our model name. Since our model is

named post, we need to loop over post_listwith our for loop. The rest of the template remains

the same.
94https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.

TemplateView
95https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-display/#listview

https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.TemplateView
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-display/#listview
https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.TemplateView
https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.TemplateView
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-display/#listview

Chapter 5: Message Board Website 109

Code

<!-- templates/post_list.html -->
<h1>Message board homepage</h1>

{% for post in post_list %}
{{ post.text }}
{% endfor %}

The final step is to update posts/urls.py with the new name for our view, PostList. We can

comment out or delete the previous code. Remember that we must also add the as_view()

method to return a callable view.

Code

posts/urls.py
from django.urls import path

from .views import post_list
from .views import PostList # new

urlpatterns = [
path("", post_list, name="post_list"),
path("", PostList.as_view(), name="home"), # new

]

And that’s it! If you refresh your home page, it should work just as before. We have written a new

view, updated the name of the context variable in the template, and updated the URL file.

Initial Commit

Everything works, so it is a good time to initialize our directory and create a .gitignore file.

We can initialize a new Git repository from the command line with the git init command.

Chapter 5: Message Board Website 110

Shell

(.venv) $ git init

Then, in your text editor, create a new .gitignore file in the root directory and add three lines

so that the .venv directory, Python bytecode, and the db.sqlite file are not tracked.

.gitignore

.venv/
__pycache__/
*.sqlite3

If you now run git status, the .venv directory, __pycache__ directory, and the db.sqlite3 file

are ignored. Use git add -A to add the intended files/directories and write an initial commit

message.

Shell

(.venv) $ git status
(.venv) $ git add -A
(.venv) $ git commit -m "initial commit"

Tests

Now that our project works with a database, we need to use TestCase96, which will let us create

a test database. In other words, we don’t need to run tests on our actual database, but instead,

we canmake a separate test database, fill it with sample data, and test against it, which is a much

safer and more performant approach.

Our Post model contains only one field, text, so let’s set up our data and then check that it is

stored correctly in the database. All test methods must start with the phrase test so Django

knows to test them!

We will use the hook setUpTestData()97 to create our test data: it is much faster than using the

setUp() hook from Python’s unittest because it creates the test data only once per test case

96https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.TestCase
97https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.TestCase.setUpTestData

https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.TestCase
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.TestCase.setUpTestData
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.TestCase
https://docs.djangoproject.com/en/5.0/topics/testing/tools/#django.test.TestCase.setUpTestData

Chapter 5: Message Board Website 111

rather than per test. It is still common, however, to see Django projects that rely on setUp()

instead. Converting any such tests over to setUpTestData is a reliable way to speed up a test

suite and should be done!

setUpTestData() is a classmethod98, which means it is a method that can transform into a class.

To use it, we’ll use the @classmethod function decorator. As PEP 8 explains99, in Python, it is a

best practice to always use cls as the first argument to class methods. Here is what the code

looks like:

Code

posts/tests.py
from django.test import TestCase

from .models import Post

class PostTests(TestCase):
@classmethod
def setUpTestData(cls):

cls.post = Post.objects.create(text="This is a test!")

def test_model_content(self):
self.assertEqual(self.post.text, "This is a test!")

At the top, we import TestCase and our Postmodel. Then, we create a test class, PostTests, that

extends TestCase and uses the built-in method setUpTestData to develop initial data. In this

instance, we only have one item stored as cls.post that can be referred to in subsequent tests

within the class as self.post. Our first test, test_model_content, uses assertEqual to check

that the content of the text field matches what we expect.

Run the test on the command line with the command python manage.py test.

98https://docs.python.org/3/library/functions.html?highlight=classmethod#classmethod
99https://peps.python.org/pep-0008/#function-and-method-arguments

https://docs.python.org/3/library/functions.html?highlight=classmethod#classmethod
https://peps.python.org/pep-0008/#function-and-method-arguments
https://docs.python.org/3/library/functions.html?highlight=classmethod#classmethod
https://peps.python.org/pep-0008/#function-and-method-arguments

Chapter 5: Message Board Website 112

Shell

(.venv) $ python manage.py test
Found 1 test(s).
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.
--
Ran 1 test in 0.001s

OK
Destroying test database for alias 'default'...

It passed! Why does the output say only one test ran when we have two functions? Again, only

functions that start with the name test will be run! So, while we can use setup functions and

classes to help with our tests unless a function is named correctly, it won’t be executed with the

python manage.py test command.

It is time to check our URLs, views, and templates. We want to check the following four things

for our message board page:

• URL exists at / and returns a 200 HTTP status code

• URL is available by its name of “home”

• Correct template is used called “post_list.html”

• Homepage content matches what we expect in the database

Since this project has only one webpage, we can include all of these tests in our existing

PostTests class. Make sure to import reverse at the top of the page and add the four tests

as follows:

Chapter 5: Message Board Website 113

Code

posts/tests.py
from django.test import TestCase
from django.urls import reverse # new

from .models import Post

class PostTests(TestCase):
@classmethod
def setUpTestData(cls):

cls.post = Post.objects.create(text="This is a test!")

def test_model_content(self):
self.assertEqual(self.post.text, "This is a test!")

def test_url_exists_at_correct_location(self): # new
response = self.client.get("/")
self.assertEqual(response.status_code, 200)

def test_url_available_by_name(self): # new
response = self.client.get(reverse("home"))
self.assertEqual(response.status_code, 200)

def test_template_name_correct(self): # new
response = self.client.get(reverse("home"))
self.assertTemplateUsed(response, "post_list.html")

def test_template_content(self): # new
response = self.client.get(reverse("home"))
self.assertContains(response, "This is a test!")

If you rerun our tests you should see that they all pass.

Chapter 5: Message Board Website 114

Shell

(.venv) $ python manage.py test
Found 5 test(s).
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.
--
Ran 5 tests in 0.006s

OK
Destroying test database for alias 'default'...

In the previous chapter, we discussed how unit tests work best when they are self-contained

and highly verbose. However, there is an argument to be made here that the bottom three tests

are just testing that the homepage works as expected: it uses the correct URL name and the

intended template name and contains expected content. We can combine these three tests into

one unit test, test_homepage.

Code

posts/tests.py
from django.test import TestCase
from django.urls import reverse # new
from .models import Post

class PostTests(TestCase):
@classmethod
def setUpTestData(cls):

cls.post = Post.objects.create(text="This is a test!")

def test_model_content(self):
self.assertEqual(self.post.text, "This is a test!")

def test_url_exists_at_correct_location(self):
response = self.client.get("/")
self.assertEqual(response.status_code, 200)

def test_homepage(self): # new
response = self.client.get(reverse("home"))
self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, "post_list.html")
self.assertContains(response, "This is a test!")

Chapter 5: Message Board Website 115

Run the tests one last time to confirm that they all pass.

Shell

(.venv) $ python manage.py test
Found 3 test(s).
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.
--
Ran 3 tests in 0.005s

OK
Destroying test database for alias 'default'...

Ultimately, we want our test suite to cover as much code functionality as possible yet remain

easy for us to reason about. This update is easier to read and understand.

That’s enough tests for now; it’s time to commit the changes to Git.

Shell

(.venv) $ git add -A
(.venv) $ git commit -m "added tests"

GitHub

We also need to store our code on GitHub. Since you should already have a GitHub account from

previous chapters, create a new repo called message-board. Select the “Private” radio button.

On the next page, scroll down towhere it says, “or push an existing repository from the command

line.” Copy and paste the two commands there into your terminal, which should look like the

below after replacing wsvincent (my username) with your GitHub username:

Chapter 5: Message Board Website 116

Shell

(.venv) $ git remote add origin https://github.com/wsvincent/message-board.git
(.venv) $ git branch -M main
(.venv) $ git push -u origin main

Conclusion

We’ve built and tested our first database-driven app and learned how to create a database model,

update it with the admin panel, and write tests. We also looked at both function-based and

class-based approaches for the views. In the next chapter, we will build a more complex Blog

application with user accounts for signup and login, allowing users to create/edit/delete their

posts and then add CSS for styling.

Chapter 6: Blog Website

In this chapter, wewill begin building a Blog application that allows users to read, create, edit, and

delete posts. This functionality, CRUD (Create-Read-Update-Delete), is the dominant pattern for

most websites. If you think about Facebook, Instagram, or Reddit, all you do is read posts and

sometimes create, edit, or delete them. That’s what we’ll implement here with a blog app with

a homepage listing all posts and an individual page for each post. We’ll also introduce CSS for

styling, learn about static files, and write more advanced tests to ensure everything works as

expected.

Initial Set Up

The setup for this project is similar to past examples in this book:

• make a new directory for our code called blog

• install Django in a new virtual environment called .venv

• create a new Django project called django_project

• create a new app blog

• perform a migration to set up the database

• update django_project/settings.py

Let’s implement them now in a new command line terminal. Start with the new directory, add a

new virtual environment, and activate it.

Chapter 6: Blog Website 118

Shell

Windows
$ cd onedrive\desktop\code
$ mkdir blog
$ cd blog
$ python -m venv .venv
$.venv\Scripts\Activate.ps1
(.venv) $

macOS
$ cd ~/desktop/code
$ mkdir blog
$ cd blog
$ python3 -m venv .venv
$ source .venv/bin/activate
(.venv) $

Then, install Django and Black, create a new project called django_project, create a new app

called blog, and migrate the initial database.

Shell

(.venv) $ python -m pip install django~=5.0.0
(.venv) $ python -m pip install black
(.venv) $ django-admin startproject django_project .
(.venv) $ python manage.py startapp blog
(.venv) $ python manage.py migrate

Regarding app names, it is generally a best practice to use the plural form, such as pages or

posts, unless your app name doesn’t make sense as a plural, like blog, so we use the singular

form here. To ensure Django knows about our new app, open your text editor and add the new

app to INSTALLED_APPS in the django_project/settings.py file:

Chapter 6: Blog Website 119

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"blog", # new

]

Spin up the local server using the runserver command.

Shell

(.venv) $ python manage.py runserver

You should see the friendly Django welcome page if you navigate to http://127.0.0.1:8000/ in

your web browser.

The initial installation is complete! Next, we’ll learn more about databases and Django’s ORM,

then create our database models for a blog application.

Blog Post Models

Before we write the code for our Django model, let’s take a moment to visualize how we want

the information in our database to be structured. In our previous example, the Message Board

app, we only had a single field for content. Here, we want a database table called Post with three

fields: Title, Author, and Body. The actual database table with columns and rows should look like

this:

Chapter 6: Blog Website 120

Post Database Table

Post

TITLE AUTHOR BODY
Hello, World! wsv My first blog post. Woohoo!
Goals Today wsv Learn Django and build a blog application.
3rd Post wsv This is my 3rd entry.

Remember that the models.py file is the single, definitive source of information about our data,

containing the necessary fields and behaviors of the stored data. We can write Python in a

models.py file, and the Django ORM will translate it into SQL. Write the following code in the

blog/models.py file.

Code

blog/models.py
from django.db import models

class Post(models.Model):
title = models.CharField(max_length=200)
author = models.CharField(max_length=200)
body = models.TextField()

def __str__(self):
return self.title

At the top of the file, we import the modelsmodule and then create a class, Post, that extends it.

The Post class has three fields (think of them as columns) for title, author, and body. Each field

must have an appropriate field type100. The first two use CharField, meaning a Character Field

with a maximum character length of 200, while the third uses TextField, intended for a large

amount of text.

Adding the __str__method is technically optional, but as we saw in the last chapter, it is a best

practice to ensure a human-readable version of our model object in the Django admin. In this

case, it will display the title field of any blog post.

100https://docs.djangoproject.com/en/5.0/ref/models/fields/#field-types

https://docs.djangoproject.com/en/5.0/ref/models/fields/#field-types
https://docs.djangoproject.com/en/5.0/ref/models/fields/#field-types

Chapter 6: Blog Website 121

Now that our new database model exists, we need to create a new migration file and migrate

the change to apply it to our database. Stop the server with Control+c. You can complete this

two-step process with the commands below:

Shell

(.venv) $ python manage.py makemigrations blog
Migrations for 'blog':
blog/migrations/0001_initial.py
- Create model Post

(.venv) $ python manage.py migrate
Operations to perform:
Apply all migrations: admin, auth, blog, contenttypes, sessions

Running migrations:
Applying blog.0001_initial... OK

The database is now configured, and a new migrations directory containing our changes exists

within the blog app directory.

Primary Keys and Foreign Keys

We could hop over to the Django admin and add data to our blog post model. However, twomore

important concepts—primary and foreign keys—must be covered before building the rest of the

Blog app.

Because relational databases have relationships between tables, there needs to be an easy way

for them to communicate. The solution is adding a column–known as a primary key that contains

unique values. When there is a relationship between two tables, the primary key is the link,

maintaining a consistent relationship. If we look back at our simple Post schema, it should,

therefore, include another field for “Primary Key”:

Chapter 6: Blog Website 122

Post Schema

Post

primary_key
title
author
body

Primary keys are a standard part of relational database design. As a result, Django automatically

adds an auto-incrementing primary key101 to our database models. Its value starts at 1 and

increases sequentially to 2, 3, and so on. The naming convention is <table_id>, meaning that

for a Post model, the primary key column is named post_id.

Post Schema

Post

post_id
title
author
body

As a result, under the hood, our existing Post database table has four columns/fields.

Post Database Table

Post

POST_ID TITLE AUTHOR BODY
1 Hello, World! wsv My first blog post. Woohoo!
2 Goals Today wsv Learn Django and build a blog application.
3 3rd Post wsv This is my 3rd entry.

Now that we know about primary keys, it’s time to see how they are used to link tables. With

more than one table, each will contain a column of primary keys starting with 1 and increasing

sequentially, just like in our Post model example. In our blog model, consider that we have

a field for author, but in the actual Blog app, we want users to be able to log in and create

101https://docs.djangoproject.com/en/5.0/topics/db/models/#automatic-primary-key-fields

https://docs.djangoproject.com/en/5.0/topics/db/models/#automatic-primary-key-fields
https://docs.djangoproject.com/en/5.0/topics/db/models/#automatic-primary-key-fields

Chapter 6: Blog Website 123

blog posts. That means we’ll need a second table for users to link to our existing table for blog

posts. Fortunately, authentication is a common–and challenging to implement well–feature on

websites that Django has an entire built-in authentication system102 that we can use. In a later

chapter, wewill use it to add signup, login, logout, password reset, and other functionality. But for

now, we can use the Django auth user model103, which comes with various fields. If we visualized

the schema of our Post and Usermodels now, it would look like this:

Post and User Schema

Post User
-------- --------
post_id user_id
title username
author first_name
body last_name

email
password
groups
user_permissions
is_staff
is_active
is_superuser
last_login
date_joined

How do we link these two tables together so they have a relationship? We want the author field

in Post to link to the User model so that each post has an author corresponding to a user. We

can do this by linking the User model primary key, user_id, to the Post.author field. A link like

this is known as a foreign key relationship. Foreign keys in one table always correspond to the

primary keys of a different table. So, establishing a foreign key relationship for authors and users

in our blog app means that the author fields of the Post model will have the primary key of

the corresponding user in the Usermodel who authored that specific post. In our example, wsv,

whose primary key in the User model is 1, authored all three of the posts, so that same primary

key, 1, is listed as the foreign key in the Author column for each of the three posts in our Post

model.

Here is how it looks in the code. We only need to change the author field in our Postmodel.

102https://docs.djangoproject.com/en/5.0/ref/contrib/auth/
103https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#fields

https://docs.djangoproject.com/en/5.0/ref/contrib/auth/
https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#fields
https://docs.djangoproject.com/en/5.0/ref/contrib/auth/
https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#fields

Chapter 6: Blog Website 124

Code

blog/models.py
from django.db import models

class Post(models.Model):
title = models.CharField(max_length=200)
author = models.ForeignKey(

"auth.User",
on_delete=models.CASCADE,

) # new
body = models.TextField()

def __str__(self):
return self.title

The ForeignKey104 field defaults to a many-to-one relationship, meaning one user can be the

author of many different blog posts but not the other way around.

It is worth mentioning that there are three types of foreign relationships:many-to-one,many-to-

many, and _one-to-one. A many-to-one relationship, as we have in our Post model, is the most

common occurrence. Amany-to-many relationship would exist if there were a database tracking

authors and books: each author can write multiple books, and each book can have multiple

authors. A one-to-one relationship would exist in a database tracking people and passports: only

one person can have one passport.

Note that when an object referenced by a ForeignKey is deleted, an additional on_delete105

argumentmust be set. Understanding on_delete fully is an advanced topic, but choosing CASCADE

is typically safe, as we do here.

Since we have updated our database models again, we should create a new migrations file and

then migrate the database to apply it.

104https://docs.djangoproject.com/en/5.0/ref/models/fields/#django.db.models.ForeignKey
105https://docs.djangoproject.com/en/5.0/ref/models/fields/#django.db.models.ForeignKey.on_delete

https://docs.djangoproject.com/en/5.0/ref/models/fields/#django.db.models.ForeignKey
https://docs.djangoproject.com/en/5.0/ref/models/fields/#django.db.models.ForeignKey.on_delete
https://docs.djangoproject.com/en/5.0/ref/models/fields/#django.db.models.ForeignKey
https://docs.djangoproject.com/en/5.0/ref/models/fields/#django.db.models.ForeignKey.on_delete

Chapter 6: Blog Website 125

Shell

(.venv) $ python manage.py makemigrations blog
Migrations for 'blog':
blog/migrations/0002_alter_post_author.py
- Alter field author on post

(.venv) $ python manage.py migrate
Operations to perform:
Apply all migrations: admin, auth, blog, contenttypes, sessions

Running migrations:
Applying blog.0002_alter_post_author... OK

A second migrations file will now appear in the blog/migrations directory that documents this

change.

Admin

We need a way to access our data: enter the Django admin! First, create a superuser account by

typing the command below and following the prompts to set up an email and password. Note

that typing your password will not appear on the screen for security reasons.

Shell

(.venv) $ python manage.py createsuperuser
Username (leave blank to use 'wsv'): wsv
Email:
Password:
Password (again):
Superuser created successfully.

Now rerun the Django server with the command python manage.py runserver and navigate to

the admin at 127.0.0.1:8000/admin/. Log in with your new superuser account.

Oops! Where’s our new Postmodel? We forgot to update blog/admin.py, so let’s do that now.

Chapter 6: Blog Website 126

Code

blog/admin.py
from django.contrib import admin
from .models import Post

admin.site.register(Post)

If you refresh the page, you’ll see the update.

Admin Homepage

Let’s add two blog posts so we have some sample data. Click the + Add button next to Posts to

create a new entry. Make sure to add an “author” to each post, too, since all model fields are

required by default.

You will see an error if you try to enter a post without an author. To change this, we could add

field options106 to our model to make a given field optional or default to a specified value.

106https://docs.djangoproject.com/en/5.0/ref/models/fields/#field-options

https://docs.djangoproject.com/en/5.0/ref/models/fields/#field-options
https://docs.djangoproject.com/en/5.0/ref/models/fields/#field-options

Chapter 6: Blog Website 127

Admin Change List with Two Posts

Although our model has three fields, the Django admin defaults to displaying whatever is in

the __str__ method in the list view. In our case, that is the title field. However, it is quite

straightforward to customize the admin further to display all three fields.

To do this, we can extend ModelAdmin107 by creating a new class, PostAdmin. Within it, we can

set list_display108 to control what is shown on the admin change list page. We also must register

both themodel, Post, and the extended ModelAdmin classwe’ve created, PostAdmin, at the bottom

of the file.

107https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#modeladmin-objects
108https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display

https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#modeladmin-objects
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#modeladmin-objects
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display

Chapter 6: Blog Website 128

Code

blog/admin.py
from django.contrib import admin
from .models import Post

class PostAdmin(admin.ModelAdmin): # new
list_display = (

"title",
"author",
"body",

)

admin.site.register(Post, PostAdmin) # new

All three model fields will be visible if you refresh the admin change list page.

Admin Change List with All Fields

Now that our databasemodel is complete, wemust create the necessary view, URL, and template

to display the information in our web application.

Chapter 6: Blog Website 129

Views

Our view needs to list all available blog posts. We can write it as a function-based view; the code

is identical to what we used in the last chapter for our Message Board. In web development, we

are often performing similar tasks over and over again. This is what led to the development of

generic class-based views!

Code

blog/views.py
from django.shortcuts import render
from .models import Post

def post_list(request):
posts = Post.objects.all()
return render(request, 'home.html', {'posts': posts})

As a brief recap, we import the render() shortcut function and the Postmodel at the top of the

file. Then we create a function, post_list. The first parameter is named request by convention

and represents an instance of the HttpRequest object that triggered the view. Then, we set a

variable, posts, equal to a QuerySet containing all Post objects in the database using the default

model manager name of objects and the built-in all()method. Finally, we use render to return

the request object, specify the template, and add a context dictionary named posts equal to the

variable posts containing all Blog posts.

URLs

We want to display our blog posts on the homepage, so we’ll first configure our app-level

blog/urls.py file and then our project-level django_project/urls.py file to achieve this. In

your text editor, create a new file called urls.pywithin the blog app and update it with the code

below.

Chapter 6: Blog Website 130

Code

blog/urls.py
from django.urls import path
from .views import post_list

urlpatterns = [
path("", post_list, name="home"),

]

At the top, we import the pathmodule and our view, post_list. Then we set a single route at the

empty string, "", which matches the route URL of our website. We pass in the view, post_list,

as the second argument and then add an optional “home” name that will come in handy shortly

in our template.

We also should update our django_project/urls.py file so that it knows to forward all requests

directly to the blog app.

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
path("admin/", admin.site.urls),
path("", include("blog.urls")), # new

]

We’ve added include on the second line and a URL pattern using an empty string regular

expression, "", indicating that URL requests should be redirected as is to blog’s URLs for further

instructions.

Templates

With our URLs and views now complete, we’re only missing the third piece of the puzzle:

templates. Let’s use template inheritance to avoid repeating code, starting with a base.html file

and a home.html file that inherits from it. Later, when we add templates for creating and editing

blog posts, they can also be inherited from base.html.

Chapter 6: Blog Website 131

Start by adding our new templates directory.

Shell

(.venv) $ mkdir templates

Create two new templates in your text editor: templates/base.html and templates/home.html.

Then update django_project/settings.py so Django knows to look there for our templates.

Code

django_project/settings.py
TEMPLATES = [

{
...
"DIRS": [BASE_DIR / "templates"], # new
...

},
]

And update the base.html template as follows.

Code

<!-- templates/base.html -->
<html>

<head>
<title>Django blog</title>
</head>

<body>
<header>
<h1>Django blog</h1>
</header>
<div>
{% block content %}
{% endblock content %}
</div>
</body>

</html>

Chapter 6: Blog Website 132

The link to url 'home' means that we expect a URL with the name “home” to power our

homepage. The code between {% block content %} and {% endblock content %} is designed

to be filled by other templates. Speaking of which, here is the code for home.html.

Code

<!-- templates/home.html -->
{% extends "base.html" %}

{% block content %}
{% for post in posts %}
<div class="post-entry">
<h2>{{ post.title }}</h2>
<p>Author: {{ post.author }}
<p>{{ post.body }}</p>
</div>
{% endfor %}
{% endblock content %}

At the top, we note that this template extends base.html and then wraps our desired code with

content blocks. We use the Django Templating Language to set up a simple for loop for each blog

post.We are looping over the context dictionary posts, whichwe defined in our view, and naming

each item as post. Then, we can use dot notation to display fields like post.title, post.author,

and post.body.

If you start theDjango server againwith python manage.py runserver and refresh the homepage,

we can see it is working.

Chapter 6: Blog Website 133

Blog Homepage with Two Posts

But it looks terrible. Let’s fix that by adding some styling.

Static Files

Static files109 are the Django community’s term for additional files commonly served on websites,

such as CSS, fonts, images, and JavaScript. Even though we haven’t added any to our project yet,

we are already relying on core Django static files—custom CSS, fonts, images, and JavaScript—to

power the look and feel of the Django admin.

In production, things are more complex, which we will cover properly in the deployment section

of this book. The central concept to understand is that it is farmore efficient to combine all static

files across a Django project into a single location in production. If you look near the bottom

of the existing django_project/settings.py file, there is already a configuration for STATIC_-

URL110, which refers to the URL location of all static files in production. In other words, if our

website had the URL example.com, all static files would be available in example.com/static.

109https://docs.djangoproject.com/en/5.0/howto/static-files/
110https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-STATIC_URL

https://docs.djangoproject.com/en/5.0/howto/static-files/
https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-STATIC_URL
https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-STATIC_URL
https://docs.djangoproject.com/en/5.0/howto/static-files/
https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-STATIC_URL

Chapter 6: Blog Website 134

Code

django_project/settings.py
STATIC_URL = "static/"

For local development, we don’t have to worry about static files because the web server–run via

the runserver command–will automatically find and serve them for us.

The first question when adding a new static file is where to place it. By default, Django will look

within each app for a folder called “static”; in other words, a folder called blog/static/. If you

recall, this is similar to how templates are treated.

As Django projects grow in complexity over time and have multiple apps, it is often simpler to

reason about static files if they are stored in a single, project-level directory instead. That is the

approach we will take here.

Quit the local server with Control+c and create a new static directory in the same folder as the

manage.py file.

Shell

(.venv) $ mkdir static

STATICFILES_DIRS111 defines the additional locations the built-in staticfiles app will traverse

looking for static files beyond an app/static folder. We need to add our project-level static

folder to this configuration.

Code

django_project/settings.py
STATIC_URL = "static/"
STATICFILES_DIRS = [BASE_DIR / "static"] # new

Next, create a css directory within static.

111https://docs.djangoproject.com/en/5.0/ref/settings/#staticfiles-dirs

https://docs.djangoproject.com/en/5.0/ref/settings/#staticfiles-dirs
https://docs.djangoproject.com/en/5.0/ref/settings/#staticfiles-dirs

Chapter 6: Blog Website 135

Shell

(.venv) $ mkdir static/css

Add a new file within your text editor in this directory called static/css/base.css. What should

we put in our file? How about changing the title to red?

Code

/* static/css/base.css */
header h1 a {
color: red;
}

The last step is adding the static files to our templates by adding {% load static %} to the top of

base.html. Because our other templates inherit from base.html, we only have to add this once.

Include a new line at the bottom of the <head></head> code that explicitly references our new

base.css file.

Code

<!-- templates/base.html -->
{% load static %}
<html>

<head>
<title>Django blog</title>
<link rel="stylesheet" href="{% static 'css/base.css' %}">
</head>
...

Phew! That was a pain, but it’s a one-time hassle. We can add static files to our static directory,

which will automatically appear in all our templates.

Start the server again with python manage.py runserver and look at our updated homepage at

http://127.0.0.1:8000/.

Chapter 6: Blog Website 136

Blog Homepage with Red Title

If you see an error, TemplateSyntaxError at /, you forgot to add the {% load static %} line at

the top. Even after all my years of using Django, I still make this mistake all the time! Fortunately,

Django’s error message says, “Invalid block tag on line 4: ‘static’. Did you forget to register or load

this tag?”. A pretty accurate description of what happened, no?

Even with this new styling, we can still do a little better. Let’s add a custom font and some more

CSS. Since this book is not on CSS, we can insert the following between <head></head> tags to

add Source Sans Pro112, a free font from Google.

Code

<!-- templates/base.html -->
{% load static %}
<html>

<head>
<title>Django blog</title>
<link href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:400"
rel="stylesheet">
<link href="{% static 'css/base.css' %}" rel="stylesheet">
</head>
...

Then, update our CSS file by copying and pasting the following code:

112https://fonts.google.com/specimen/Source+Sans+Pro

https://fonts.google.com/specimen/Source+Sans+Pro
https://fonts.google.com/specimen/Source+Sans+Pro

Chapter 6: Blog Website 137

Code

/* static/css/base.css */
body {
font-family: 'Source Sans Pro', sans-serif;
font-size: 18px;

}

header {
border-bottom: 1px solid #999;
margin-bottom: 2rem;
display: flex;

}

header h1 a {
color: red;
text-decoration: none;

}

.nav-left {
margin-right: auto;

}

.nav-right {
display: flex;
padding-top: 2rem;

}

.post-entry {
margin-bottom: 2rem;

}

.post-entry h2 {
margin: 0.5rem 0;

}

.post-entry h2 a,

.post-entry h2 a:visited {
color: blue;
text-decoration: none;

}

.post-entry p {
margin: 0;
font-weight: 400;

}

Chapter 6: Blog Website 138

.post-entry h2 a:hover {
color: red;

}

Refresh the homepage at http://127.0.0.1:8000/; you should see the following.

Blog Homepage with CSS

Individual Blog Pages

Now, we can add functionality for individual blog pages. We need to create a new view, URL, and

template to do that. I hope you’re noticing a pattern in Django development!

Start with the view. At the top of our views file, import the shortcut function get_object_or_-

404()113, which calls the get114 QuerySet method to return an object or raises a Http404115 error if

unsuccessful.

We will name the view function post_detail as it represents the detailed view of a blog post. It

accepts two parameters: the first, request, is an instance of the HttpRequest object; the second,

113https://docs.djangoproject.com/en/5.0/topics/http/shortcuts/#get-object-or-404
114https://docs.djangoproject.com/en/5.0/ref/models/querysets/#django.db.models.query.QuerySet.get
115https://docs.djangoproject.com/en/5.0/topics/http/views/#django.http.Http404

https://docs.djangoproject.com/en/5.0/topics/http/shortcuts/#get-object-or-404
https://docs.djangoproject.com/en/5.0/topics/http/shortcuts/#get-object-or-404
https://docs.djangoproject.com/en/5.0/ref/models/querysets/#django.db.models.query.QuerySet.get
https://docs.djangoproject.com/en/5.0/topics/http/views/#django.http.Http404
https://docs.djangoproject.com/en/5.0/topics/http/shortcuts/#get-object-or-404
https://docs.djangoproject.com/en/5.0/ref/models/querysets/#django.db.models.query.QuerySet.get
https://docs.djangoproject.com/en/5.0/topics/http/views/#django.http.Http404

Chapter 6: Blog Website 139

pk, is a parameter extracted from the URL that identifies the specific blog post to be displayed

by its primary key.

Let’s take a moment to focus on that last sentence, as it gets at the heart of understanding this

function. To specify an individual blog post, we need a way to say that out of the list of all blog

posts in the database, we should choose this specific one. The easiest and default way is to use

the primary key ID associated with each record. For example, the first entry has a primary key

(PK) of 1, the second of 2, and so on automatically set by the Django ORM.

Within the body of the post_detail function there are two lines. First, we call get_object_or_404

on the Postmodel and specify that the pk primary key matches the parameter pk from the URL.

If we want the URL /1, our function will call the blog post with a primary key of 1. When you

see this in action, it will make more sense. We set the variable post to equal this specific blog

post. Then we use the render() function to return a response, where the first argument is the

request variable, the second is the template post_detail.html, and the third is the template

context where we create a variable post that matches the post from the previous line.

Code

blog/views.py
from django.shortcuts import render, get_object_or_404 # new
from .models import Post

def post_list(request):
posts = Post.objects.all()
return render(request, 'home.html', {'posts': posts})

def post_detail(request, pk): # new
post = get_object_or_404(Post, pk=pk)
return render(request, "post_detail.html", {"post": post})

This pattern for accessing a list of information from the database or a single item is repeated

repeatedly in web developmentwith Django, so don’t worry if it’s a little confusing at themoment.

With our view created, the next two steps are adding a URL route and a template. In the

blog/urls.py file, import the new view, post_detail, and add a URL route at post/<int:pk>/.

Chapter 6: Blog Website 140

This pattern will look a bit strange initially as it is our first use of a Django path converter116. Up

to this point, we have hardcoded our URL routes, but it is more common to use variables. In this

case, we specify that individual posts will start at post/, but then we use int to specify that the

captured value from the URL should be treated as an integer and the variable’s name passed to

the view is pk. The second argument is the view name, post_detail, and we add the optional

third argument of a name that is also post_detail.

Code

blog/urls.py
from django.urls import path
from .views import post_list, post_detail # new

urlpatterns = [
path("post/<int:pk>/", post_detail, name="post_detail"), # new
path("", post_list, name="home"),

]

The last step is adding a new template file called templates/post_detail.html in your text editor.

Then type in the following code:

Code

<!-- templates/post_detail.html -->
{% extends "base.html" %}

{% block content %}
<div class="post-entry">
<h2>{{ post.title }}</h2>
<p>{{ post.body }}</p>
</div>
{% endblock content %}

At the top, we specify that this template inherits from base.html. The template context variable

post contains information from this particular blog post, and we can display individual fields

using post.title and post.body.

If you start the server with python manage.py runserver, you’ll see a dedicated page for our first

blog post at http://127.0.0.1:8000/post/1/.

116https://docs.djangoproject.com/en/5.0/topics/http/urls/#path-converters

https://docs.djangoproject.com/en/5.0/topics/http/urls/#path-converters
https://docs.djangoproject.com/en/5.0/topics/http/urls/#path-converters

Chapter 6: Blog Website 141

Blog Post One Detail

Woohoo! You can also go to http://127.0.0.1:8000/post/2/ to see the second entry.

Blog Post Two Detail

To make our lives easier, we should update the link on the homepage so we can directly access

individual blog posts from there. Swap out the current empty link, with <a href="{%

url 'post_detail' post.pk %}">.

Chapter 6: Blog Website 142

Code

<!-- templates/home.html -->
{% extends "base.html" %}

{% block content %}
{% for post in posts %}
<div class="post-entry">
<h2>{{ post.title }}</h2>
<p>{{ post.body }}</p>
</div>
{% endfor %}
{% endblock content %}

We start by using Django’s url template tag and specifying the URL pattern name of post_detail.

If you look at post_detail in our URLs file, it expects to be passed an argument pk representing

the primary key for the blog post. Fortunately, Django has already created and included this pk

field on our post object, but wemust pass it into the URL by adding it to the template as post.pk.

To confirm everything works, refresh themain page at http://127.0.0.1:8000/ and click on the

title of each blog post to confirm the new links work.

get_absolute_url()

Currently, we are using the url template tag, which means that every time we want to display

an individual blog post in this template or other templates, we must repeat the pattern {% url

'post_detail' post.pk %}. If the URL pattern changes, we need to update every templatewhere

the URL is constructed, which increases the risk of errors.

A better approach is to use the built-in get_absolute_url()117 method, which tells Django how to

calculate the canonical URL for our model object. In the blog/models.py file, add a new method

for getting the get_absolute_url.

117https://docs.djangoproject.com/en/5.0/ref/models/instances/#get-absolute-url

https://docs.djangoproject.com/en/5.0/ref/models/instances/#get-absolute-url
https://docs.djangoproject.com/en/5.0/ref/models/instances/#get-absolute-url

Chapter 6: Blog Website 143

Code

blog/models.py
from django.db import models
from django.urls import reverse # new

class Post(models.Model):
title = models.CharField(max_length=200)
author = models.ForeignKey(

"auth.User",
on_delete=models.CASCADE,

)
body = models.TextField()

def __str__(self):
return self.title

def get_absolute_url(self): # new
return reverse("post_detail", kwargs={"pk": self.pk})

At the top, we import reverse()118, a utility function for our URLs. Then, we define get_absolute_-

url using self as the first parameter referring to the model instance on which the method

is called. This is a standard practice in Python for instance methods. The reverse() function

accepts the URL name and keyword arguments or “kwargs.” In this case, we are setting the

variable pk to equal the primary key of our model instance.

We don’t need to update the migrations files because we aren’t changing the database schema

here. Migrations are only required when changes to the model affect the database schema, such

as adding or removing fields, changing field types, or modifying relationships between models.

In the template file, update the href link to now use post.get_absolute_url.

118https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#django.urls.reverse

https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#django.urls.reverse
https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#django.urls.reverse

Chapter 6: Blog Website 144

Code

<!-- templates/home.html -->
{% extends "base.html" %}

{% block content %}
{% for post in posts %}
<div class="post-entry">
<h2>{{ post.title }}</h2> <!-- new -->
<p>{{ post.body }}</p>
</div>
{% endfor %}
{% endblock content %}

URL paths can and do change over a project’s lifetime. With the previous method, if we changed

the post detail view and URL path, we’d have to go through all our HTML and templates to update

the code, a very error-prone and hard-to-maintain process. By using get_absolute_url()

instead, we have one place, the models.py file, where the canonical URL is set, so our templates

don’t have to change.

Refresh the main page at http://127.0.0.1:8000/ and click on the title of each blog post to

confirm the links still work as expected.

Tests

Our Blog project has added new functionality we have not seen or tested before this chapter. The

Postmodel has multiple fields; we have a user for the first time, and there is a list view of all blog

posts and a detailed view for each blog post. There is quite a lot to test!

First, we can set up our test data and check the content of the Postmodel. Here’s how that might

look.

Chapter 6: Blog Website 145

Code

blog/tests.py
from django.contrib.auth import get_user_model
from django.test import TestCase

from .models import Post

class BlogTests(TestCase):
@classmethod
def setUpTestData(cls):

cls.user = get_user_model().objects.create_user(
username="testuser", email="test@email.com", password="secret"

)

cls.post = Post.objects.create(
title="A good title",
body="Nice body content",
author=cls.user,

)

def test_post_model(self):
self.assertEqual(self.post.title, "A good title")
self.assertEqual(self.post.body, "Nice body content")
self.assertEqual(self.post.author.username, "testuser")
self.assertEqual(str(self.post), "A good title")
self.assertEqual(self.post.get_absolute_url(), "/post/1/")

At the top, we import get_user_model()119 to refer to our User and then added TestCase and

the Post model. Our class BlogTests contains setup data for both a test user and a test post.

Currently, all the tests are focused on the Postmodel, so we name our test test_post_model. It

checks that all three model fields return the expected values. Our model also has new tests for

the __str__ and get_absolute_urlmethods.

Go ahead and run the tests.

119https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.get_user_model

https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.get_user_model

Chapter 6: Blog Website 146

Shell

(.venv) $ python manage.py test
Found 1 test(s).
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.
--
Ran 1 test in 0.088s

OK
Destroying test database for alias 'default'...

What else to add? We now have two types of pages: a homepage that lists all blog posts and a

detail page for each blog post containing its primary key in the URL. In the previous two chapters,

we implemented tests to check that:

• expected URLs exist and return a 200 status code

• URL names work and return a 200 status code

• the correct template name is used

• the correct template content is outputted

All four tests need to be included. We could have eight new unit tests, four for each of our two

pages, or we could combine them a bit. There isn’t a right or wrong answer here so long as tests

are implemented to test functionality, and it is clear from their names what went wrong if an

error arises.

Here is one way to add these checks to our code:

Chapter 6: Blog Website 147

Code

blog/tests.py
from django.contrib.auth import get_user_model
from django.test import TestCase
from django.urls import reverse # new

from .models import Post

class BlogTests(TestCase):
@classmethod
def setUpTestData(cls):

cls.user = get_user_model().objects.create_user(
username="testuser", email="test@email.com", password="secret"

)

cls.post = Post.objects.create(
title="A good title",
body="Nice body content",
author=cls.user,

)

def test_post_model(self):
self.assertEqual(self.post.title, "A good title")
self.assertEqual(self.post.body, "Nice body content")
self.assertEqual(self.post.author.username, "testuser")
self.assertEqual(str(self.post), "A good title")
self.assertEqual(self.post.get_absolute_url(), "/post/1/")

def test_url_exists_at_correct_location_listview(self): # new
response = self.client.get("/")
self.assertEqual(response.status_code, 200)

def test_url_exists_at_correct_location_detailview(self): # new
response = self.client.get("/post/1/")
self.assertEqual(response.status_code, 200)

def test_post_listview(self): # new
response = self.client.get(reverse("home"))
self.assertEqual(response.status_code, 200)
self.assertContains(response, "Nice body content")
self.assertTemplateUsed(response, "home.html")

def test_post_detailview(self): # new
response = self.client.get(reverse("post_detail",

Chapter 6: Blog Website 148

kwargs={"pk": self.post.pk}))
no_response = self.client.get("/post/100000/")
self.assertEqual(response.status_code, 200)
self.assertEqual(no_response.status_code, 404)
self.assertContains(response, "A good title")
self.assertTemplateUsed(response, "post_detail.html")

First, we check that the URL exists at the proper location for both views. Then we import

reverse120 at the top and create test_post_listview to confirm that the named URL is used,

returns a 200 status code, contains the expected content, and uses the home.html template.

For test_post_detailview, we must pass in the pk of our test post to the response. The same

template is used, and we add new tests for what we don’t want to see. For example, we don’t

want a response at the URL /post/100000/ because we have not created that many posts yet!

And we don’t want a 404 HTTP status response either. It is always good to sprinkle in examples

of incorrect tests that should pass through failure using the no_responsemethod to ensure your

tests aren’t mindlessly passing for some reason.

Run the new tests to confirm everything is working.

Shell

(.venv) $ python manage.py test
Found 5 test(s).
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.....
--
Ran 5 tests in 0.095s

OK
Destroying test database for alias 'default'...

A common mistake when testing URLs is failing to include the preceding slash /. For example, if

test_url_exists_at_correct_location_detailview is checked in the response for "post/1/"

that would throw a 404 error. However, if you check “‘/post/1/”, it will be a 200 status response.

120https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#reverse

https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#reverse
https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#reverse

Chapter 6: Blog Website 149

Git

Now is also a good time for our first Git commit. Initialize our directory and review all the added

content by checking the status.

Shell
(.venv) $ git init
(.venv) $ git status

Oops, we do not want to include the .venv directory and the SQLite database! There might

also be a __pycache__ directory. To remove all three, in your text editor, create a project-level

.gitignore file–in the same top directory as manage.py–and add these three lines.

.gitignore

.venv/
__pycache__/
db.sqlite3

Run git status again to confirm the .venv directory is no longer included. Then, add the rest

of our work along with a commit message.

Shell
(.venv) $ git status
(.venv) $ git add -A
(.venv) $ git commit -m "initial commit"

Conclusion

We’ve now built a basic blog application from scratch! We can create, edit, or delete the content

using the Django admin, which will display a list of all posts on the homepage and individual

pages for each post. We looked at static files for the first time and added some styling with CSS.

We also learned about the best practice of using get_absolute_url in our templates and made

substantial progress on our test suite.

In the next section, we’ll switch to generic class-based views and add forms to create, update,

and delete blog posts so we don’t have to use the Django admin for these changes.

Chapter 7: Forms

In this chapter, we’ll continue working on our Blog application by switching to class-based views

and adding forms so a user can create, edit, or delete any of their blog entries. HTML forms are

one of the more complicated and error-prone aspects of web development. Any time you accept

user input, there are significant security concerns since users are uploading information to your

database. All forms must be properly rendered, validated, and saved to the database. Writing this

code by hand would be time-consuming and complex, so Django comes with powerful built-in

Forms121 and generic editing views122 for common tasks like displaying, creating, updating, or

deleting a form.

ListView and DetailView

Currently, we are using function-based views for our page listing all blog posts and powering

individual posts. We could continue down this page and create function-based views for create,

edit, and delete functionality; however, doing so requires a lot more code and is error-prone

compared to using generic class-based views designed explicitly for the job. For this reason, we

will switch to using generic class-based views throughout the rest of the book.

Let’s look at the current blog/views.py file.

121https://docs.djangoproject.com/en/5.0/topics/forms/
122https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/

https://docs.djangoproject.com/en/5.0/topics/forms/
https://docs.djangoproject.com/en/5.0/topics/forms/
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/
https://docs.djangoproject.com/en/5.0/topics/forms/
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/

Chapter 7: Forms 151

Code

blog/views.py
from django.shortcuts import render, get_object_or_404 # new
from .models import Post

def post_list(request):
posts = Post.objects.all()
return render(request, 'home.html', {'posts': posts})

def post_detail(request, pk): # new
post = get_object_or_404(Post, pk=pk)
return render(request, "post_detail.html", {"post": post})

Switching over to generic class-based views is relatively straightforward. Here is the updated

code for the views:

Code

blog/views.py
from django.views.generic import ListView, DetailView
from .models import Post

class BlogListView(ListView):
model = Post
template_name = "home.html"

class BlogDetailView(DetailView):
model = Post
template_name = "post_detail.html"

At the top, we import the generic views ListView and DetailView, along with our model, Post.

We used ListView previously in the Message Board app, but DetailView123 is new. It is used for

detail pages and has a format extremely similar to ListView. We pass in the generic class-based

view and define the model and template for both views. That’s it.

123[DetailView](https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-display/#django.views.

generic.detail.DetailView)

[DetailView](https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-display/#django.views.generic.detail.DetailView)
[DetailView](https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-display/#django.views.generic.detail.DetailView)
[DetailView](https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-display/#django.views.generic.detail.DetailView)

Chapter 7: Forms 152

Next up is the URLs file. We change the views imports to match our new ones, BlogListView

and BlogDetailView. Then, we update the second argument in both routes, specifying the view

name and adding as_view() to transform the class into a callable view function.

Code

blog/urls.py
from django.urls import path
from .views import BlogListView, BlogDetailView # new

urlpatterns = [
path("post/<int:pk>/", BlogDetailView.as_view(), name="post_detail"), # new
path("", BlogListView.as_view(), name="home"), # new

]

The final update is to our template. Previously, in our function-based list and detail views, we

named the context object posts and post respectively. But for the GCBV ListView, you need

to know that the default naming pattern is <model>_list; since our model is Post, the context

object will be post_list. The updated code looks as follows:

Code

<!-- templates/home.html -->
{% extends "base.html" %}

{% block content %}
{% for post in post_list %} <!-- new -->
<div class="post-entry">
<h2>{{ post.title }}</h2>
<p>{{ post.body }}</p>
</div>
{% endfor %}
{% endblock content %}

Do you want to change the context object name? You can! Django almost always provides a way

to customize behavior. The attribute to update is called context_object_name124. The update

below would switch it back to posts as opposed to post_list. We won’t implement this change

in the book, but you are welcome to do so on your own.

124https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-multiple-object/#django.views.

generic.list.MultipleObjectMixin.context_object_name

https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-multiple-object/#django.views.generic.list.MultipleObjectMixin.context_object_name
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-multiple-object/#django.views.generic.list.MultipleObjectMixin.context_object_name
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-multiple-object/#django.views.generic.list.MultipleObjectMixin.context_object_name

Chapter 7: Forms 153

Code

blog/views.py
...
class BlogListView(ListView):

model = Post
template_name = "home.html"
context_object_name = 'posts' # Change the context object name to 'posts'

...

The context object name in a DetailView also has a default value of either the model name (so

post in this case) or object. That means we could leave our current template as is.

Code

<!-- templates/post_detail.html -->
{% extends "base.html" %}

{% block content %}
<div class="post-entry">
<h2>{{ post.title }}</h2>
<p>{{ post.body }}</p>
</div>
{% endblock content %}

Or we could change post to object like this:

Code

<!-- templates/post_detail.html -->
{% extends "base.html" %}

{% block content %}
<div class="post-entry">
<h2>{{ object.title }}</h2>
<p>{{ object.body }}</p>
</div>
{% endblock content %}

If you refresh an individual blog post page in your web browser, you’ll see that both work. Which

naming pattern you prefer is a personal preference. I like to use the model name, so we’ll use

post going forward in our detail view templates. If you don’t like these built-in names for the

Chapter 7: Forms 154

template context object, you can override the existing context_object_name125 variable in your

DetailView.

Mixins

If you were paying close attention, you noticed that the context_object_name attribute for

ListView was part of MultipleObjectMixin126 whereas for DetailView it was part of SingleObject-

Mixin127. Why the difference?

A mixin is a type of multiple inheritance where you can add specific functionality to a class by

including additional classes. Mixins are used in class-based views (CBVs) and generic class-based

views (GCBVs) to add reusable behaviors or functionality without duplicating code. But you need

to know what you’re doing to use them effectively.

Covering Django mixins fully is beyond the scope of a beginner book, but it is worth briefly

explaining how the inheritance structure works. To do this, we will rely on Classy Class-Based

Views128, a website dedicated to describing the full methods and attributes for each DjangoGCBV.

It is an invaluable resource if you decide to work with GCBVs. Looking at the entry for ListView129,

you can see its Ancestors listed at the top of the page. The hierarchy of classes used by ListView

starts from the bottom.

1. ListView

2. MultipleObjectTemplateResponseMixin

3. TemplateResponseMixin

4. BaseListView

5. MultipleObjectMixin

6. ContextMixin

7. View
125https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-single-object/#django.views.generic.

detail.SingleObjectMixin.context_object_name
126https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-multiple-object/

#multipleobjectmixin
127https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-single-object/#singleobjectmixin
128https://ccbv.co.uk/
129https://ccbv.co.uk/projects/Django/5.0/django.views.generic.list/ListView/

https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-single-object/#django.views.generic.detail.SingleObjectMixin.context_object_name
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-multiple-object/#multipleobjectmixin
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-single-object/#singleobjectmixin
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-single-object/#singleobjectmixin
https://ccbv.co.uk/
https://ccbv.co.uk/
https://ccbv.co.uk/projects/Django/5.0/django.views.generic.list/ListView/
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-single-object/#django.views.generic.detail.SingleObjectMixin.context_object_name
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-single-object/#django.views.generic.detail.SingleObjectMixin.context_object_name
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-multiple-object/#multipleobjectmixin
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-multiple-object/#multipleobjectmixin
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-single-object/#singleobjectmixin
https://ccbv.co.uk/
https://ccbv.co.uk/projects/Django/5.0/django.views.generic.list/ListView/

Chapter 7: Forms 155

The base class, View130, is used by all class-based views. You don’t need to memorize all these

mixins to use GCBVs. But over time as attempt to customize their behavior, you will likely find

yourself looking for the specific attribute or method that needs to be overridden.

A proponent of function-based views would say that this is ridiculous; you should have all the

code you are using visible. A fan of class-based views would counter that it is ridiculous to write

the same boilerplate code repeatedly when you only want to change one or two lines. I fall in the

latter camp, but you can certainly understand why some very experienced Django developers

prefer function-based views.

CreateView

We now need a view where users can create a new blog post. CreateView131 is a generic class-

based view designed for exactly this purpose. Here is the code we need in our views file.

Code

blog/views.py
from django.views.generic import ListView, DetailView
from django.views.generic.edit import CreateView # new
from .models import Post

class BlogListView(ListView):
model = Post
template_name = "home.html"

class BlogDetailView(DetailView):
model = Post
template_name = "post_detail.html"

class BlogCreateView(CreateView): # new
model = Post
template_name = "post_new.html"
fields = ["title", "author", "body"]

130https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#view
131https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#django.views.generic.edit.

CreateView

https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#view
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#django.views.generic.edit.CreateView
https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#view
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#django.views.generic.edit.CreateView
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#django.views.generic.edit.CreateView

Chapter 7: Forms 156

At the top we import CreateView from the django.views.generic.editmodule. Then we create

a class, BlogCreateView, that extends CreateView, specifying themodel, Post, the template name,

post_new.html, and the database fields wewant visible on the form, which are title, author, and

body. That’s it! The function-based version of this view is much, much longer.

Then, update the URLs file to add a URL route for the create page.

Code

blog/urls.py
from django.urls import path
from .views import BlogListView, BlogDetailView, BlogCreateView # new

urlpatterns = [
path("post/new/", BlogCreateView.as_view(), name="post_new"), # new
path("post/<int:pk>/", BlogDetailView.as_view(), name="post_detail"),
path("", BlogListView.as_view(), name="home"),

]

Simple, right? It’s the same URL, views, and template pattern we’ve seen before. We import

the new view, BlogCreateView and set the new path. It is located at post/new/, uses the view

BlogCreateView, and has a URL name of post_new.

The only thing left is our template. Make a new template, templates/post_new.html, in the text

editor. Then add the following code:

Code

<!-- templates/post_new.html -->
{% extends "base.html" %}

{% block content %}
<h1>New post</h1>
<form action="" method="post">{% csrf_token %}

{{ form }}
<input type="submit" value="Save">

</form>
{% endblock content %}

Let’s break down what we’ve done:

• on the top line, we extended our base template.

Chapter 7: Forms 157

• useHTML <form> tagswith the POSTmethod sincewe’re sending data. If wewere receiving

data from a form, for example, in a search box, we would use GET.

• add a {% csrf_token %}132 which Django provides to protect our form from cross-site

request forgery. You should use it for all your Django forms.

• then, to output our form data use {{ form }} to render the specified fields.

• finally, specify an input type of submit and assign the value “Save”.

To view our work, start the server with python manage.py runserver and go to the create a new

page at http://127.0.0.1:8000/post/new.

Blog New Page

Try to create a new blog post and submit it by clicking the “Save” button.

132https://docs.djangoproject.com/en/5.0/ref/csrf/

https://docs.djangoproject.com/en/5.0/ref/csrf/
https://docs.djangoproject.com/en/5.0/ref/csrf/

Chapter 7: Forms 158

Blog Third Post Save

Upon completion, it will redirect to a detail pagewith the post at http://127.0.0.1:8000/post/3/.

Success!

Blog Third Post Page

Rather than making a user guess where the create new post page is, let’s add a link to our base

template. It will take the form where post_new is the

name for our URL.

Chapter 7: Forms 159

Your updated templates/base.html file should look as follows:

Code

<!-- templates/base.html -->
{% load static %}
<html>

<head>
<title>Django blog</title>
<link href="https://fonts.googleapis.com/css?family=\

Source+Sans+Pro:400" rel="stylesheet">
<link href="{% static 'css/base.css' %}" rel="stylesheet">

</head>

<body>
<div>
<header>

<!-- start new HTML... -->
<div class="nav-left">
<h1>Django blog</h1>

</div>
<div class="nav-right">

+ New Blog Post
</div>
<!-- end new HTML... -->

</header>
{% block content %}
{% endblock content %}

</div>
</body>

</html>

Navigate to the homepage and the “+ New Blog Post” link in the upper right-hand corner will be

visible.

Chapter 7: Forms 160

Homepage with New Button

Clicking it will redirect to the create new post page at http://127.0.0.1:8000/post/new/.

If we were to create this functionality using function-based views, we’d need a dedicated

blog/forms.py file and a much longer view explaining how to handle the form, validate the data,

and save it to the database. By using CreateView instead, we rely on built-in code to handle all

these issues.

UpdateView

Our next task is to add a page with a form for editing existing blog posts. It turns out that the

generic class-based view, UpdateView133, is designed explicitly for this. We will add it to our Blog,

and the pattern of adding a new view, then a new URL path, and finally, a new template should

feel familiar.

Let’s begin with the view. At the top of the blog/views.py file import UpdateView and then create

a new class, BlogUpdateView, that extends it. Just as with CreateView, we only have to define

three things: the model, template name, and fields we want displayed on the form.

133https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#django.views.generic.edit.

UpdateView

https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#django.views.generic.edit.UpdateView
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#django.views.generic.edit.UpdateView
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#django.views.generic.edit.UpdateView

Chapter 7: Forms 161

Code

blog/views.py
from django.views.generic import ListView, DetailView
from django.views.generic.edit import CreateView, UpdateView # new

from .models import Post

class BlogListView(ListView):
model = Post
template_name = "home.html"

class BlogDetailView(DetailView):
model = Post
template_name = "post_detail.html"

class BlogCreateView(CreateView):
model = Post
template_name = "post_new.html"
fields = ["title", "author", "body"]

class BlogUpdateView(UpdateView): # new
model = Post
template_name = "post_edit.html"
fields = ["title", "body"]

Notice that we are not including “author” in the fields because we assume that the author of

a post will not change during editing. We only want the title and body text to be available to

update.

Next we need a new URL path for this update view. Update blog/urls.py by importing

BlogUpdateView at the top and then create a new route with the URL pattern of /post/pk/edit.

It will use BlogUpdateView as the view and have a URL named post_edit.

Chapter 7: Forms 162

Code

blog/urls.py
from django.urls import path
from .views import (

BlogListView,
BlogDetailView,
BlogCreateView,
BlogUpdateView, # new

)

urlpatterns = [
path("post/new/", BlogCreateView.as_view(), name="post_new"),
path("post/<int:pk>/", BlogDetailView.as_view(), name="post_detail"),
path("post/<int:pk>/edit/", BlogUpdateView.as_view(), name="post_edit"), # new
path("", BlogListView.as_view(), name="home"),

]

The third step is adding a new template for the update page. We know from our view that it

should have the name post_edit.html, so add that file to your templates directory. It should

have the following code.

Code

<!-- templates/post_edit.html -->
{% extends "base.html" %}

{% block content %}
<h1>Edit post</h1>
<form action="" method="post">{% csrf_token %}

{{ form }}
<input type="submit" value="Update">

</form>
{% endblock content %}

At the top, we use extends on the base template, base.html, and then sandwich this page’s con-

tent between the content blocks. We again use HTML <form></form> tags, Django’s csrf_token

for security, and give it the value “Update” on the submit button.

We could go directly to the URL for a specific post, for example, 127.0.0.1:8000/post/1/edit/

for the first blog post. However, a better approach is to add a link to the individual blog page in

the post_detail.html template.

Chapter 7: Forms 163

Code

<!-- templates/post_detail.html -->
{% extends "base.html" %}

{% block content %}
<div class="post-entry">
<h2>{{ post.title }}</h2>
<p>{{ post.body }}</p>

</div>
<!-- start new HTML... -->
+ Edit Blog Post
<!-- end new HTML... -->
{% endblock content %}

We’ve added a link using <a href>... and the {% url ... %} tag. Within it, we’ve specified

the target name of our URL, which will be called post_edit, and also passed the parameter

needed, which is the primary key of the post: post.pk.

Now, if you click on a blog entry, you’ll see our new + Edit Blog Post hyperlink.

Blog Page with Edit Button

If you click on “+ Edit Blog Post” you’ll be redirected to /post/1/edit/ if it is your first blog post,

hence the 1 in the URL. Note that the form is pre-filled with our database’s existing data for the

post. Let’s make a change…

Chapter 7: Forms 164

Blog edit page

After clicking the “Update” button, we are redirected to the detail view of the post where the

change is visible. Navigate to the homepage to see the change next to all the other entries.

Blog Homepage with Edited Post

Chapter 7: Forms 165

DeleteView

The final feature to add in this chapter is the ability to delete blog posts. We’ll use yet another

generic class-based view, DeleteView134, to do this and create the necessary view, URL, and

template.

To begin, update the blog/views.py file by importing DeleteView and reverse_lazy135 at the top

and then create a new view that subclasses DeleteView. Both reverse and reverse_lazy perform

the same task: generating aURL based on an input like theURL name. The difference is when they

are evaluated: reverse executes right away, so when BlogDeleteView is executed, immediately

the model, template_name, and success_url methods are loaded. But the success_url needs to

find out what the resulting URL path is associated with the URL name “home.” It can’t always do

that in time! That’s why we use reverse_lazy in this example: it delays the actual call to the URL

dispatcher until the moment it is needed, not when our class BlogDeleteView is being evaluated.

Code

blog/views.py
from django.views.generic import ListView, DetailView
from django.views.generic.edit import CreateView, UpdateView, DeleteView # new
from django.urls import reverse_lazy # new

from .models import Post

...
class BlogDeleteView(DeleteView): # new

model = Post
template_name = "post_delete.html"
success_url = reverse_lazy("home")

DeleteView requires a model, template name, and success URL. We have supplied all three here.

Remember, after a blog post is deleted, we have to redirect the user somewhere. In this case, that

is our homepage at the URL name of “home”.

An astute reader might notice that both CreateView and UpdateView also have redirects yet we

did not have to specify a success_url. Why is this? If available, Django, by default, will use the

134https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#deleteview
135https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#reverse-lazy

https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#deleteview
https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#reverse-lazy
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#deleteview
https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#reverse-lazy

Chapter 7: Forms 166

get_absolute_url() on the model object, a handy feature, but you would only know about it

from reading a book like this or deeply reading the docs. More likely, with experience, you have

used these GCBVs before and vaguely recall something about the redirect, consult the docs on

model forms136 and then implement. There is no way to memorize everything you need to know

as a Django developer; instead, with time, you’ll start to see the broad patterns and be able to

look up the documentation for implementation details.

With our view complete, we can turn to the URL. It’s a similar pattern where we import the view,

BlogDeleteView, set a URL path, specify the view, and include a URL name. A convention is to

add /delete/ to your URL path as we’ve done here.

Code

blog/urls.py
from django.urls import path
from .views import (

BlogListView,
BlogDetailView,
BlogCreateView,
BlogUpdateView,
BlogDeleteView, # new

)

urlpatterns = [
path("post/new/", BlogCreateView.as_view(), name="post_new"),
path("post/<int:pk>/", BlogDetailView.as_view(), name="post_detail"),
path("post/<int:pk>/edit/", BlogUpdateView.as_view(),

name="post_edit"),
path("post/<int:pk>/delete/", BlogDeleteView.as_view(),

name="post_delete"), # new
path("", BlogListView.as_view(), name="home"),

]

Lastly, we need to add a template file confirming the user’s wish to delete the blog post. It will

be called templates/post_delete.html and contain the following code:

136https://docs.djangoproject.com/en/5.0/topics/class-based-views/generic-editing/#model-forms

https://docs.djangoproject.com/en/5.0/topics/class-based-views/generic-editing/#model-forms
https://docs.djangoproject.com/en/5.0/topics/class-based-views/generic-editing/#model-forms
https://docs.djangoproject.com/en/5.0/topics/class-based-views/generic-editing/#model-forms

Chapter 7: Forms 167

Code

<!-- templates/post_delete.html -->
{% extends "base.html" %}

{% block content %}
<h1>Delete post</h1>
<form action="" method="post">{% csrf_token %}

<p>Are you sure you want to delete "{{ post.title }}"?</p>
<input type="submit" value="Confirm">

</form>
{% endblock content %}

Notewe are using post.titlehere to display the title of our blog post.We could use object.title

as it is also provided by DetailView.

We can add a link to delete blog posts on the individual blog page, post_detail.html.

Code

<!-- templates/post_detail.html -->
{% extends "base.html" %}

{% block content %}
<div class="post-entry">
<h2>{{ post.title }}</h2>
<p>{{ post.body }}</p>

</div>
<div>
<p>+ Edit Blog Post</p>
<!-- new HTML below here... -->
<p>+ Delete Blog Post</p>

</div>
{% endblock content %}

If you start the server again with the command python manage.py runserver and refresh any

individual post page, you’ll see our “Delete Blog Post” link.

Chapter 7: Forms 168

Blog Delete Post

Clicking on the link takes us to the delete page for the blog post, which displays the blog post’s

title.

Blog Delete Post Page

If you click the “Confirm” button, it redirects you to the homepage where the blog post has been

deleted!

Chapter 7: Forms 169

Homepage with Post Deleted

Tests

It’s time for tests tomake sure everythingworks now–and in the future–as expected.We’ve added

new views for create, update, and delete, so that means three new tests:

• def test_post_createview

• def test_post_updateview

• def test_post_deleteview

Update your existing tests.py file with new tests below test_post_detailview as follows.

Chapter 7: Forms 170

Code

blog/tests.py
...
def test_post_createview(self): # new

response = self.client.post(
reverse("post_new"),
{

"title": "New title",
"body": "New text",
"author": self.user.id,

},
)
self.assertEqual(response.status_code, 302)
self.assertEqual(Post.objects.last().title, "New title")
self.assertEqual(Post.objects.last().body, "New text")

def test_post_updateview(self): # new
response = self.client.post(

reverse("post_edit", args="1"),
{

"title": "Updated title",
"body": "Updated text",

},
)
self.assertEqual(response.status_code, 302)
self.assertEqual(Post.objects.last().title, "Updated title")
self.assertEqual(Post.objects.last().body, "Updated text")

def test_post_deleteview(self): # new
response = self.client.post(reverse("post_delete", args="1"))
self.assertEqual(response.status_code, 302)

For test_post_createview, we create a new response and check that the page has a 302 redirect

status code and that the last() object created on our model matches the new response. Then

test_post_updateview sees if we can update the initial post created in setUpTestData since

that data is available throughout our entire test class. The last new test, test_post_deleteview,

confirms that a 302 redirect occurs when deleting a post.

More tests can always be added later, such as for the templates, but at least we have some

coverage of all our new functionality. Stop the local web server with Control+c and run these

tests now. They should all pass.

Chapter 7: Forms 171

Shell

(.venv) $ python manage.py test
Found 8 test(s).
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
......
--
Ran 8 tests in 0.101s

OK
Destroying test database for alias 'default'...

Conclusion

With a small amount of code, we’ve built a blog application that allows for creating, read-

ing, updating, and deleting blog posts. While there are multiple ways to achieve this same

functionality–we could have used function-based views or written our own class-based views–

we’ve demonstrated how little code it takes in Django to make this happen.

Note, however, a potential security concern: currently any user can update or delete blog

entries, not just the creator! Fortunately, Django has built-in features to restrict access based

on permissions, which we’ll cover later in the book.

But for now, our blog application is working, and in the next chapter, we’ll add user accounts so

users can sign up, log in, and log out of the web app.

Chapter 8: User Accounts

Onemajor area still needs to be added to our Blog application: user accounts. We have an author

field but no way, currently, for a user to sign up, log in, log out, and so on. Implementing user

authentication from scratch is famously hard and not advised! It is one areawhere you really don’t

want tomake amistake because of all the resulting security implications. Fortunately, Django has

a powerful, battle-tested, built-in user authentication system137 that we can use and customize

as needed.

Whenever you create a new project, by default, Django installs the auth app, which provides us

with a User object138 containing:

• username

• password

• email

• first_name

• last_name

We will use this User object to implement login, logout, and signup in our blog application.

Log In

Django provides us with a default view for a login page via LoginView139. All we need to add

is a URL pattern for the auth system, a login template, and a minor update to our django_-

project/settings.py file.

First, update the django_project/urls.py file. We’ll place our login and logout pages at the

accounts/ URL: a one-line addition to the next-to-last line.
137https://docs.djangoproject.com/en/5.0/topics/auth/
138https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#django.contrib.auth.models.User
139https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.views.LoginView

https://docs.djangoproject.com/en/5.0/topics/auth/
https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.views.LoginView
https://docs.djangoproject.com/en/5.0/topics/auth/
https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.views.LoginView

Chapter 8: User Accounts 173

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path("admin/", admin.site.urls),
path("accounts/", include("django.contrib.auth.urls")), # new
path("", include("blog.urls")),

]

As the LoginView140 documentation notes, by default, Django will look within a templates

directory called registration for a file called login.html for a login form. So we need to create

a new directory within templates called registration and the requisite file within it. From the

command line, type Control+c to quit our local server. Then, create the new directory.

Shell

(.venv) $ mkdir templates/registration

Then, with your text editor, create a new template file, templates/registration/login.html,

filled with the following code:

Code

<!-- templates/registration/login.html -->
{% extends "base.html" %}

{% block content %}
<h2>Log In</h2>
<form method="post">{% csrf_token %}
{{ form }}
<button type="submit">Log In</button>

</form>
{% endblock content %}

We’re using HTML <form></form> tags and specifying the POSTmethod since we’re sending data

to the server (we’d use GET if we were requesting data, such as in a search engine form). We add

140https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.views.LoginView

https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.views.LoginView
https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.views.LoginView

Chapter 8: User Accounts 174

{% csrf_token %} for security concerns to prevent a CSRF Attack and then include a “submit”

button.

The final step is to specifywhere to redirect the user upon successful login. We can set this with

the LOGIN_REDIRECT_URL setting. At the bottom of the django_project/settings.py file, add the

following:

Code

django_project/settings.py
LOGIN_REDIRECT_URL = "home" # new

Now the user will be redirected to the “home” template, which is our homepage. And we’re

actually done at this point! If you now start up the Django server again with python manage.py

runserver and navigate to our login page at http://127.0.0.1:8000/accounts/login/, you’ll

see the following:

Login Page

Upon entering the login info for our superuser account, we are redirected to the homepage.

Notice that we didn’t add any view logic or create a database model because the Django auth

system automatically provided both for us. Thanks, Django!

Chapter 8: User Accounts 175

Updated Homepage

Let’s update our base.html template so we display amessage to users regardless of whether they

are logged in. We can use the is_authenticated141 attribute for this.

For now, place this code in a prominent position. Later on, we can style it more appropriately.

Update the base.html file with new code starting beneath the closing </header> tag.

Code

<!-- templates/base.html -->
...
<body>
<div>
<header>

<div class="nav-left">
<h1>Django blog</h1>

</div>
<div class="nav-right">

+ New Blog Post
</div>

</header>
<!-- start new HTML... -->
{% if user.is_authenticated %}
<p>Hi {{ user.username }}!</p>
{% else %}
<p>You are not logged in.</p>
Log In
{% endif %}
<!-- end new HTML... -->
{% block content %}
{% endblock content %}

</div>
</body>

</html>

If the user is logged in, we say hello to them by name; if not, we provide a link to our newly

created login page.

141https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#django.contrib.auth.models.User.is_

authenticated

https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated
https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated
https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated

Chapter 8: User Accounts 176

Homepage Logged In

It worked! My superuser name is wsv, which I see on the page.

Log Out Link

One of the major changes to Django 5.0, as noted in the release notes142, is the removal support

for logging out via GET requests. Previously, you could add a logout link such as <a href=” {% url

‘logout’ %}”>Log Out to a template file. But now a POST request via a form is required.

Add a logout button to the home.html file under the “Hi {{ user.username }}¡ section.

142https://docs.djangoproject.com/en/5.0/releases/5.0/

https://docs.djangoproject.com/en/5.0/releases/5.0/
https://docs.djangoproject.com/en/5.0/releases/5.0/

Chapter 8: User Accounts 177

Shell

<!-- templates/base.html-->
...
{% if user.is_authenticated %}
<p>Hi {{ user.username }}!</p>
<form action="{% url 'logout' %}" method="post">
{% csrf_token %}
<button type="submit">Log Out</button>

</form>
{% else %}
...

The Django auth app provides us with the necessary view, so all we need to do is specify where

to redirect a user when logging out. Update django_project/settings.py to provide a redirect

link called LOGOUT_REDIRECT_URL. We can add it right next to our login redirect, so the bottom

of the file should look as follows:

Code

django_project/settings.py
LOGIN_REDIRECT_URL = "home"
LOGOUT_REDIRECT_URL = "home" # new

If you refresh the homepage, you’ll see it now has a “log out” button for logged-in users.

Chapter 8: User Accounts 178

Homepage Log Out Link

And clicking it takes you back to the homepage with a login link.

Homepage Logged Out

Try logging in and out several times with your user account.

Chapter 8: User Accounts 179

Sign Up

Django does not provide a built-in view, URL, or template for signup. A common approach is to

create a dedicated app, called accounts here, but also sometimes users in other projects, for this.

That way, if we need to make further customizations to the user authentication process in the

future, it is only contained in one place.

On the command line, stop the local server with Control+c and create a dedicated new app,

accounts.

Shell

(.venv) $ python manage.py startapp accounts

Then, add the new app to the INSTALLED_APPS setting in our django_project/settings.py file

so it is registered with Django.

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"blog",
"accounts", # new

]

Next, add a new URL path in django_project/urls.py pointing to this new app directly below

where we include the built-in auth app.

Chapter 8: User Accounts 180

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path("admin/", admin.site.urls),
path("accounts/", include("django.contrib.auth.urls")),
path("accounts/", include("accounts.urls")), # new
path("", include("blog.urls")),

]

The order of our urlsmatters here because Django reads this file from top to bottom. Therefore

when we request the /accounts/signup url, Django will first look in auth, not find it, and then

proceed to the accounts app.

In your text editor, create a file called accounts/urls.py and add the following code:

Code

accounts/urls.py
from django.urls import path
from .views import SignUpView

urlpatterns = [
path("signup/", SignUpView.as_view(), name="signup"),

]

We’re using a not-yet-created view called SignUpView, which we already know is class-based

since it is capitalized and has the as_view() suffix. Its path is just signup/, so the complete URL

path will be accounts/signup/.

For the view, Django has a built-in form class, UserCreationForm143, that comes with three fields:

username, password1, and password2. We can use it with CreateView to create our signup page.

Replace the default accounts/views.py code with the following:

143https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.forms.UserCreationForm

https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.forms.UserCreationForm

Chapter 8: User Accounts 181

Code

accounts/views.py
from django.contrib.auth.forms import UserCreationForm
from django.urls import reverse_lazy
from django.views.generic import CreateView

class SignUpView(CreateView):
form_class = UserCreationForm
success_url = reverse_lazy("login")
template_name = "registration/signup.html"

We’re subclassing the generic class-based view CreateView in our SignUpView class and speci-

fying UserCreationForm, the not-yet-created template registration/signup.html. We also use

reverse_lazy to redirect the user to the login page upon successful registration.

Why use reverse_lazy here instead of reverse? The URLs are not loaded when the file is

imported for generic class-based views, so we have to use the lazy form of reverse to load them

later when they’re available.

Create the file templates/registration/signup.html in your text editor and populate it with

the code below.

Code

<!-- templates/registration/signup.html -->
{% extends "base.html" %}

{% block content %}
<h2>Sign Up</h2>
<form method="post">{% csrf_token %}

{{ form.as_p }}
<button type="submit">Sign Up</button>

</form>
{% endblock content %}

This format is very similar to what we’ve done before. We extend our base template at the top,

place our logic between <form></form> tags with the added as_p to render it with paragraph

tags, use the csrf_token for security, and include a submit button.

Chapter 8: User Accounts 182

We’re done! To test it out, start the local server with the python manage.py runserver command

and navigate to http://127.0.0.1:8000/accounts/signup/.

Django Signup Page

Notice the large amount of extra text that Django includes by default. We can customize this

using something like the built-in messages framework144, but for now, try out the form.

I created a new user called “william” and was redirected to the login page upon submission. After

logging in successfully with my new username and password, I was redirected to the homepage

with our personalized “Hi username” greeting.

144https://docs.djangoproject.com/en/5.0/ref/contrib/messages/

https://docs.djangoproject.com/en/5.0/ref/contrib/messages/
https://docs.djangoproject.com/en/5.0/ref/contrib/messages/

Chapter 8: User Accounts 183

Homepage for User William

Our ultimate flow is, therefore: Signup -> Login -> Homepage. And, of course, we can tweak

this however we want. The SignUpView redirects to login because we set success_url =

reverse_lazy('login'). The Login page redirects to the homepage because in our django_-

project/settings.py file, we set LOGIN_REDIRECT_URL = 'home'.

It may initially be overwhelming to keep track of all the various parts of a Django project, but

that’s normal. With time, they’ll start to make more sense.

Sign Up Link

One last improvement we canmake is to add a signup link to the logged-out homepage. We can’t

expect our users to know the correct URL after all! How do we do this? Well, we need to figure

out the URL name, and thenwe can pop it into our template. In accounts/urls.py, we provided it

the name of signup, so that’s all we need to add to our base.html template with the url template

tag145 just as we’ve done for our other links.

Add the link for “Sign Up” just below the existing link for “Log In” as follows:

145https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#url

https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#url
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#url
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#url

Chapter 8: User Accounts 184

Shell

<!-- templates/base.html-->
...
<p>You are not logged in.</p>
Log In |
Sign Up
...

The signup link will be visible if you navigate to the logged-out homepage. Much better!

Signup Link

GitHub

It’s been a while since we made a git commit. Let’s do that and then push a copy of our code

onto GitHub. First, check all the new work we’ve done with git status.

Shell

(.venv) $ git status

Then add the new content and enter a commit message.

Chapter 8: User Accounts 185

Shell

(.venv) $ git add -A
(.venv) $ git commit -m "forms, user accounts, and static files"

Create a new repo146 on GitHub and follow the recommended steps. I’ve chosen the name blog

here; my username is wsvincent. Make sure to use your own GitHub username and repo name

for the command setting up a remote origin.

Shell

(.venv) $ git remote add origin https://github.com/wsvincent/blog.git
(.venv) $ git branch -M main
(.venv) $ git push -u origin main

All set!

Conclusion

With a small amount of code, we have added a robust user authentication flow to our website:

login, logout, and signup. Under the hood, Django has taken care of the many security gotchas

that can crop up if you create a user authentication flow from scratch. The Blog website is now

complete. It is intentionally minimalist in design, but the combination of user authentication and

full CRUD functionality is present in most websites.

In the next chapter, we will start the final project in the book: a Newspaper website that

incorporates even more features.

146https://github.com/new

https://github.com/new
https://github.com/new

Chapter 9: Newspaper Project

This chapter and the remaining portion of the book will focus on building a production-

ready Newspaper website. The project choice is an homage to Django’s roots as a newspaper

CRM. It provides the opportunity to introduce even more features, including advanced user

authentication and styling, complex data models, permissions, deployment, and more.

Initial Set Up

The first step is to create a newDjango project from the command line.Weneed to do our familiar

steps of creating and navigating to a new directory called news and installing and activating a new

virtual environment called .venv.

Shell

Windows
$ cd onedrive\desktop\code
$ mkdir news
$ cd news
$ python -m venv .venv
$.venv\Scripts\Activate.ps1
(.venv) $

macOS
$ cd ~/desktop/code
$ mkdir news
$ cd news
$ python3 -m venv .venv
$ source .venv/bin/activate
(.venv) $

Next, install Django and Black, create a new Django project called django_project, and make a

new app called accounts.

Chapter 9: Newspaper Project 187

Shell

(.venv) $ python -m pip install django~=5.0.0
(.venv) $ python -m pip install black
(.venv) $ django-admin startproject django_project .
(.venv) $ python manage.py startapp accounts

Note that we did not run migrate to configure our database. Given how tightly connected the

usermodel is to the rest of Django, it’s important towait until afterwe’ve created our new custom

user model before doing so.

In your web browser, navigate to http://127.0.0.1:8000, and the familiar Django welcome

screen will be visible.

Git

The start of a new project is an excellent time to initialize Git and create a repo on GitHub. We’ve

done this several times before, so we can use the same commands to initialize a new local Git

repo and check its status.

Shell

(.venv) $ git init
(.venv) $ git status

The .venv directory, the __pycache__ directory, and the SQLite database should not be included

in Git, so create a project-level .gitignore file in your text editor.

.gitignore

.venv/
__pycache__/
db.sqlite3

Run git status again to confirm the .venv directory and SQLite database are not included. Then,

add the rest of our work along with a commit message.

Chapter 9: Newspaper Project 188

Shell

(.venv) $ git status
(.venv) $ git add -A
(.venv) $ git commit -m "initial commit"

Create a new repo147 on GitHub and provide a name. I’ve chosen news; my username is wsvincent.

Make sure to use your repo name and username using the command below.

Shell

(.venv) $ git remote add origin https://github.com/wsvincent/news.git
(.venv) $ git branch -M main
(.venv) $ git push -u origin main

All done!

User Profile vs Custom User Model

Django’s built-in User model148 allows us to start working with users right away, as we just did

with our Blog app in the previous chapters. However, most large projects need a way to add

information related to users, such as age or any number of additional fields. There are two

popular approaches.

The first is called the “User Profile” approach and extends the existing User model149 by creating

a OneToOneField150 to a separate model containing fields with additional information. The idea

is to keep authentication reserved for User and not bundled with non-authentication-related

user information.

The second approach is to create a customusermodel that extends User but allows for additional

user information to be added. The Django documentation151 recommends using a custom user

147https://github.com/new
148https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#django.contrib.auth.models.User
149https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#extending-the-existing-user-model
150https://docs.djangoproject.com/en/5.0/ref/models/fields/#django.db.models.OneToOneField
151https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#using-a-custom-user-model-when-

starting-a-project

https://github.com/new
https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#extending-the-existing-user-model
https://docs.djangoproject.com/en/5.0/ref/models/fields/#django.db.models.OneToOneField
https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#using-a-custom-user-model-when-starting-a-project
https://github.com/new
https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#extending-the-existing-user-model
https://docs.djangoproject.com/en/5.0/ref/models/fields/#django.db.models.OneToOneField
https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#using-a-custom-user-model-when-starting-a-project
https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#using-a-custom-user-model-when-starting-a-project

Chapter 9: Newspaper Project 189

model when starting a new project as it makes later customization far easier than using the

default User model. A custom user model can be created using AbstractUser152, which behaves

identically to the default Usermodel but allows for customization.

It is possible to implement a hybrid approach combining a custom user model and a user profile

model. But for this project, we will stick to a basic custom user model using AbstractUser.

AbstractUser

We can create a custom user model in four steps:

• update django_project/settings.py

• add a new CustomUsermodel

• add new forms for UserCreationForm and UserChangeForm

• update accounts/admin.py

In django_project/settings.py, we’ll add the accounts app to our INSTALLED_APPS. Then at the

bottom of the file, use the AUTH_USER_MODEL153 config to tell Django to use our new custom

usermodel instead of the built-in Usermodel.We’ll call our customusermodel CustomUser. Since

it will exist within our accounts app, we should refer to it as accounts.CustomUser.

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"accounts", # new

]
...
AUTH_USER_MODEL = "accounts.CustomUser" # new

152https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.models.AbstractUser
153https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-AUTH_USER_MODEL

https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.models.AbstractUser
https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-AUTH_USER_MODEL
https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.models.AbstractUser
https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-AUTH_USER_MODEL

Chapter 9: Newspaper Project 190

Next update accounts/models.py with a new User model called CustomUser, which extends the

existing AbstractUser. We will also include a custom field for age here.

Code

accounts/models.py
from django.contrib.auth.models import AbstractUser
from django.db import models

class CustomUser(AbstractUser):
age = models.PositiveIntegerField(null=True, blank=True)

If you read the documentation on custom user models154, you will see that it recommends using

AbstractBaseUser, not AbstractUser, which complicates things for beginners. Working with

Django is far simpler and remains customizable if we use AbstractUser instead.

So why use AbstractBaseUser at all? If you want a fine level of control and customization,

AbstractBaseUser can be justified. But it requires rewriting a core part of Django. If we want a

custom user model that can be updated with additional fields, the better choice is AbstractUser,

which subclasses AbstractBaseUser. In other words, we write much less code and have less

opportunity to mess things up. It’s the better choice unless you really know what you’re doing

with Django!

Note that we use both null155 and blank156 with our age field. These two terms are easy to confuse

but quite distinct:

• null is database-related. When a field has null=True, it can store a database entry as NULL,

meaning no value.

• blank is validation-related. If blank=True, then a form will allow an empty value, whereas

if blank=False, then a value is required.

In practice, null and blank are commonly used together in this fashion so that a form allows an

empty value, and the database stores that value as NULL.

154https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#specifying-a-custom-user-model
155https://docs.djangoproject.com/en/5.0/ref/models/fields/#null
156https://docs.djangoproject.com/en/5.0/ref/models/fields/#blank

https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#specifying-a-custom-user-model
https://docs.djangoproject.com/en/5.0/ref/models/fields/#null
https://docs.djangoproject.com/en/5.0/ref/models/fields/#blank
https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#specifying-a-custom-user-model
https://docs.djangoproject.com/en/5.0/ref/models/fields/#null
https://docs.djangoproject.com/en/5.0/ref/models/fields/#blank

Chapter 9: Newspaper Project 191

A common mistake is that the field type dictates how to use these values. Whenever you have a

string-based field like CharField or TextField, setting both null and blank as we’ve done will

result in two possible values for “no data” in the database, which is a bad idea. Instead, the Django

convention is to use the empty string "", not NULL.

Forms

If we step back briefly, how would we typically interact with our new CustomUser model? One

case is when a user signs up for a new account on our website. The other is within the admin app,

which allows us, as superusers, to modify existing users. So we’ll need to update the two built-in

forms for this functionality: UserCreationForm157 and UserChangeForm158.

Create a new file called accounts/forms.py and update it with the following code to extend the

existing UserCreationForm and UserChangeForm forms.

Code

accounts/forms.py
from django.contrib.auth.forms import UserCreationForm, UserChangeForm
from .models import CustomUser

class CustomUserCreationForm(UserCreationForm):
class Meta:

model = CustomUser
fields = UserCreationForm.Meta.fields + ("age",)

class CustomUserChangeForm(UserChangeForm):
class Meta:

model = CustomUser
fields = UserChangeForm.Meta.fields

For both new forms, we are using the Meta class159 to override the default fields by setting the

model to our CustomUser and using the default fields via Meta.fields which includes all default

157https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
158https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.forms.UserChangeForm
159https://docs.djangoproject.com/en/5.0/topics/forms/modelforms/#overriding-the-default-fields

https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.forms.UserChangeForm
https://docs.djangoproject.com/en/5.0/topics/forms/modelforms/#overriding-the-default-fields
https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.forms.UserChangeForm
https://docs.djangoproject.com/en/5.0/topics/forms/modelforms/#overriding-the-default-fields

Chapter 9: Newspaper Project 192

fields. To add our custom age field, we simply tack it on at the end, and itwill display automatically

on our future signup page. Pretty slick, no?

The concept of fields on a form can be confusing at first, so let’s take a moment to explore it

further. Our CustomUsermodel contains all the fields of the default Usermodel and our additional

age field, which we set.

But what are these default fields? It turns out there are many160 including username, first_name,

last_name, email, password, groups, and more. Yet when a user signs up for a new account on

Django, the default form only asks for a username, email, and password, which tells us that the

default setting for fields on UserCreationForm is just username, email, and password even though

many more fields are available.

Understanding how forms and models interact in Django takes time and repetition. Don’t be

discouraged if you are slightly confused right now! In the next chapter, we will create our signup,

login, and logout pages to tie together our CustomUsermodel and forms more clearly.

The final step is to update our admin.py file since the admin is tightly coupled to the default

User model. We will extend the existing UserAdmin161 class to use our new CustomUser model.

To control which fields are listed, we use list_display162. But to edit new custom fields, like age,

we must add fieldsets163. And to include a new custom field in the section for creating a new user

we rely on add_fieldsets.

Here is what the complete code looks like:

160https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#django.contrib.auth.models.User
161https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#extending-the-existing-user-model
162https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display
163https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.fieldsets

https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#extending-the-existing-user-model
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.fieldsets
https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#extending-the-existing-user-model
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.fieldsets

Chapter 9: Newspaper Project 193

Code

accounts/admin.py
from django.contrib import admin
from django.contrib.auth.admin import UserAdmin

from .forms import CustomUserCreationForm, CustomUserChangeForm
from .models import CustomUser

class CustomUserAdmin(UserAdmin):
add_form = CustomUserCreationForm
form = CustomUserChangeForm
model = CustomUser
list_display = [

"email",
"username",
"age",
"is_staff",

]
fieldsets = UserAdmin.fieldsets + ((None, {"fields": ("age",)}),)
add_fieldsets = UserAdmin.add_fieldsets + ((None, {"fields": ("age",)}),)

admin.site.register(CustomUser, CustomUserAdmin)

There are many ways to customize the user admin, and some developers like to add additional

options such as list_filter164, search_fields165, and ordering166.

But for this project, we are now done. Type Control+c to stop the local server and go ahead and

run makemigrations and migrate for the first time to create a new database that uses the custom

user model.

164https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_filter
165https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.search_

fields
166https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.ordering

https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_filter
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.search_fields
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.ordering
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_filter
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.search_fields
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.search_fields
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.ordering

Chapter 9: Newspaper Project 194

Shell

(.venv) $ python manage.py makemigrations accounts
Migrations for 'accounts':
accounts/migrations/0001_initial.py
- Create model CustomUser

Shell

(.venv) $ python manage.py migrate
Operations to perform:
Apply all migrations: accounts, admin, auth, contenttypes, sessions

Running migrations:
Applying contenttypes.0001_initial... OK
Applying contenttypes.0002_remove_content_type_name... OK
Applying auth.0001_initial... OK
Applying auth.0002_alter_permission_name_max_length... OK
Applying auth.0003_alter_user_email_max_length... OK
Applying auth.0004_alter_user_username_opts... OK
Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK
Applying auth.0007_alter_validators_add_error_messages... OK
Applying auth.0008_alter_user_username_max_length... OK
Applying auth.0009_alter_user_last_name_max_length... OK
Applying auth.0010_alter_group_name_max_length... OK
Applying auth.0011_update_proxy_permissions... OK
Applying auth.0012_alter_user_first_name_max_length... OK
Applying accounts.0001_initial... OK
Applying admin.0001_initial... OK
Applying admin.0002_logentry_remove_auto_add... OK
Applying admin.0003_logentry_add_action_flag_choices... OK
Applying sessions.0001_initial... OK

Superuser

Let’s create a superuser account to confirm everything is working as expected. On the command

line, type the following command and go through the prompts.

Chapter 9: Newspaper Project 195

Shell

(.venv) $ python manage.py createsuperuser

Make sure your superuser email account is one that actually works. We will use it later on to

verify email integration. But the fact that this flow here works is the first proof our custom user

model is set up correctly. Let’s view things in the admin, too, to be extra sure. Start up the web

server.

Shell

(.venv) $ python manage.py runserver

Then navigate to the admin at http://127.0.0.1:8000/admin and log in. If you click on the

link for “Users” you should see your superuser account and the default fields: Email Address,

Username, Age, and Staff Status. These were set in list_display in our admin.py file.

Admin Select User to Change

Chapter 9: Newspaper Project 196

The age field is empty because we have yet to set it. However, you can set your age now because

we set the fieldsets section. Click on the highlighted link for your superuser’s email address to

bring up the edit user interface. If you scroll to the bottom, you will see that we added the age

field. Go ahead and enter your age. Then click on “Save.”

Admin Edit Age

It will redirect back to the main Users page listing our superuser. Note that the age field is now

updated.

Chapter 9: Newspaper Project 197

Admin Updated Age

Tests

It is a good idea to add tests every timewemake code changes that alter core functionality.While

all our manual actions trying out the custom user worked just now, we may break something in

the future. Adding tests for new code and regularly running the entire test suite helps spot errors

early.

At a high level, we want to ensure that both a regular user and a superuser can be created

and have the proper field permissions. Suppose you look at the official documentation167 on

models.User, which our custom user model inherits from. In that case, it comes with several

built-in fields: username, first_name, last_name, email, password, groups, user_permissions,

167https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#fields

https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#fields
https://docs.djangoproject.com/en/5.0/ref/contrib/auth/#fields

Chapter 9: Newspaper Project 198

is_staff, is_active, is_superuser, last_login, and date_joined. It is also possible to add any

number of custom fields, as we have seen by adding the age field.

Being “staff” means a user can access the admin site and view models for which they are given

permission; a “superuser” has full access to the admin and all its models. A regular user should

have is_active set to True, is_staff set to False, and is_superuser to False. A superuser

should have everything set to True.

Here is one way to add tests to our custom user model:

Code

accounts/tests.py
from django.contrib.auth import get_user_model
from django.test import TestCase

class UsersManagersTests(TestCase):
def test_create_user(self):

User = get_user_model()
user = User.objects.create_user(

username="testuser",
email="testuser@example.com",
password="testpass1234",

)
self.assertEqual(user.username, "testuser")
self.assertEqual(user.email, "testuser@example.com")
self.assertTrue(user.is_active)
self.assertFalse(user.is_staff)
self.assertFalse(user.is_superuser)

def test_create_superuser(self):
User = get_user_model()
admin_user = User.objects.create_superuser(

username="testsuperuser",
email="testsuperuser@example.com",
password="testpass1234",

)
self.assertEqual(admin_user.username, "testsuperuser")
self.assertEqual(admin_user.email, "testsuperuser@example.com")
self.assertTrue(admin_user.is_active)
self.assertTrue(admin_user.is_staff)
self.assertTrue(admin_user.is_superuser)

Chapter 9: Newspaper Project 199

At the top, we import get_user_model()168, so we can test our user registration. We also import

TestCase since these tests touch the database.

Our class of tests is called UsersManagersTests and extends TestCase. The first unit test, test_-

create_user, checks that a regular user displays expected behavior. The second unit test, test_-

create_superuser, does the same, albeit for a superuser account.

Now run the tests; they should pass without any issues.

Shell

(.venv) $ python manage.py test
Found 2 test(s).
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
..
--
Ran 2 tests in 0.114s

OK
Destroying test database for alias 'default'...

Git

We’ve completed a bunch of new work, so it’s time to add a Git commit.

Shell

(.venv) $ git status
(.venv) $ git add -A
(.venv) $ git commit -m "custom user model"

Conclusion

Westarted our newproject by adding a customusermodel and an age field.We also explored how

to add tests whenever core Django functionality is changed and can now focus on building the

168https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.get_user_model

https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.get_user_model

Chapter 9: Newspaper Project 200

rest of our Newspaper website. In the next chapter, we will implement advanced authentication

and registration by customizing the signup, login, and logout pages.

Chapter 10: User Authentication

Now that we have a working custom user model, we can add the functionality every website

needs: the ability for users to sign up, log in, and log out. Django provides everything we need

for users to log in and out, but we must create our own form to allow new users to sign up. We’ll

also build a basic homepage with links to all three features so users don’t have to type in the

URLs by hand every time.

Templates

By default, the Django template loader looks for templates in a nested structure within each

app. For example, the structure accounts/templates/accounts/home.html would be needed

for a home.html template within the accounts app. However, a single project-level templates

directory approach is cleaner and scales better, so that’s what we’ll use.

Create a new project-level templates directory and a registration directory within where

Django will look for templates related to logging in and signing up.

Shell

(.venv) $ mkdir templates
(.venv) $ mkdir templates/registration

We need to tell Django about this new directory by updating the configuration for "DIRS" in

django_project/settings.py.

Chapter 10: User Authentication 202

Code

django_project/settings.py
TEMPLATES = [

{
...
"DIRS": [BASE_DIR / "templates"], # new
...

}
]

If you think about what happens when you log in or out of a site, you are immediately redirected

to a subsequent page. We need to tell Django where to send users in each case. The LOGIN_-

REDIRECT_URL and LOGOUT_REDIRECT_URL settings do that. We’ll configure both to redirect to our

homepage with the named URL of 'home'. Remember that when we create our URL routes, we

can add a name to each one. So when we make the homepage URL, we’ll call it 'home'.

Add these two lines at the bottom of the django_project/settings.py file.

Code

django_project/settings.py
LOGIN_REDIRECT_URL = "home" # new
LOGOUT_REDIRECT_URL = "home" # new

Now we can create four new templates within our text editor:

• templates/base.html

• templates/home.html

• templates/registration/login.html

• templates/registration/signup.html

Here’s the HTML code for each file to use. The base.html will be inherited by every other

template in our project. Using a block like {% block content %}, we can later override the

content just in this place in other templates.

Chapter 10: User Authentication 203

Code

<!-- templates/base.html -->
<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>{% block title %}Newspaper App{% endblock title %}</title>

</head>

<body>
<main>
{% block content %}
{% endblock content %}

</main>
</body>

</html>

Code

<!-- templates/home.html -->
{% extends "base.html" %}

{% block title %}Home{% endblock title %}

{% block content %}
{% if user.is_authenticated %}
<p>Hi {{ user.username }}!</p>
<form action="{% url 'logout' %}" method="post">
{% csrf_token %}
<button type="submit">Log Out</button>

</form>
{% else %}
<p>You are not logged in</p>
Log In |
Sign Up
{% endif %}
{% endblock content %}

Chapter 10: User Authentication 204

Code

<!-- templates/registration/login.html -->
{% extends "base.html" %}

{% block title %}Log In{% endblock title %}

{% block content %}
<h2>Log In</h2>
<form method="post">{% csrf_token %}
{{ form }}
<button type="submit">Log In</button>

</form>
{% endblock content %}

Code

<!-- templates/registration/signup.html -->
{% extends "base.html" %}

{% block title %}Sign Up{% endblock title %}

{% block content %}
<h2>Sign Up</h2>
<form method="post">{% csrf_token %}

{{ form.as_p }}
<button type="submit">Sign Up</button>

</form>
{% endblock content %}

Our templates are now all set. The related URLs and views are still to go.

URLs

Let’s start with the URL routes. In our django_project/urls.py file, we want our home.html

template to appear as the homepage, but we don’t want to build a dedicated pages app yet. We

can use the shortcut of importing TemplateView and setting the template_name right in our URL

pattern.

Next, we want to “include” the accounts app and the built-in auth app. The reason is that the

built-in auth app already provides views and URLs for logging in and out. But to sign up, we

Chapter 10: User Authentication 205

must create our own view and URL. To ensure that our URL routes are consistent, we place

them both at accounts/ so the eventual URLS will be /accounts/login, /accounts/logout, and

/accounts/signup.

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include # new
from django.views.generic.base import TemplateView # new

urlpatterns = [
path("admin/", admin.site.urls),
path("accounts/", include("accounts.urls")), # new
path("accounts/", include("django.contrib.auth.urls")), # new
path("", TemplateView.as_view(template_name="home.html"),

name="home"), # new
]

Now create a file with your text editor called accounts/urls.py and update it with the following

code:

Code

accounts/urls.py
from django.urls import path
from .views import SignUpView

urlpatterns = [
path("signup/", SignUpView.as_view(), name="signup"),

]

The last step is our views.py file containing the logic for our signup form. We’re using Django’s

generic CreateView here and telling it to use our CustomUserCreationForm, to redirect to login

once a user signs up successfully and that our template is named signup.html.

Chapter 10: User Authentication 206

Code

accounts/views.py
from django.urls import reverse_lazy
from django.views.generic import CreateView

from .forms import CustomUserCreationForm

class SignUpView(CreateView):
form_class = CustomUserCreationForm
success_url = reverse_lazy("login")
template_name = "registration/signup.html"

Ok, phew! We’re done. Let’s test things out. Start the server with python manage.py runserver

and go to the homepage.

Homepage Logged In

We logged in to the admin in the previous chapter, so you should see a personalized greeting

here. Click on the “Log Out” link.

Homepage Logged Out

Nowwe’re on the logged-out homepage. Click on Log In link and use your superuser credentials.

Upon successfully logging in, you’ll be redirected to the homepage and see the same personalized

greeting. It works!

Now, use the “Log Out” link to return to the logged-out homepage, and this time, click on the

“Sign Up” link. You’ll be redirected to our signup page. See that the age field is included!

Chapter 10: User Authentication 207

Create a new user. Mine is called testuser, and I’ve set the age to 25.

Signup Page

After successfully submitting the form, you’ll be redirected to the login page. Log in with your

new user, and you’ll be redirected again to the homepage with a personalized greeting for the

new user. But since we have the new age field, let’s add that to the home.html template. It is a

field on the usermodel, so to display it, we only need to use {{ user.age }}.

Code

<!-- templates/home.html -->
{% extends "base.html" %}

{% block title %}Home{% endblock title %}

{% block content %}
{% if user.is_authenticated %}
<!-- new code here! -->
Hi {{ user.username }}! You are {{ user.age }} years old.
<!-- end of new code -->
<form action="{% url 'logout' %}" method="post">
{% csrf_token %}
<button type="submit">Log Out</button>

</form>
{% else %}
<p>You are not logged in</p>
Log In |
Sign Up

Chapter 10: User Authentication 208

{% endif %}
{% endblock content %}

Save the file and refresh the homepage.

Homepage for testuser

Everything works as expected.

Admin

Navigate to the admin at http://127.0.0.1:8000/admin in your web browser and log in to view

the two user accounts.

Chapter 10: User Authentication 209

Wrong Admin Login

What’s this? Why can’t we log in? We’re logged in with our new testuser account, not our

superuser account. Only a superuser account has permission to log in to the admin! So, use

your superuser account to log in instead.

After you’ve done that, you should see the normal admin homepage. Click on Users to see our

two users: the testuser account we just created and your previous superuser name (mine is wsv).

Chapter 10: User Authentication 210

Users in the Admin

Everything is working, but you may notice no “email address” for our testuser. Why is that?

Our signup page has no email field because it was not included in accounts/forms.py. This is an

important point: just because the usermodel has a field does not mean it will be included in our

custom signup form unless explicitly added. Let’s do so now.

Currently, in accounts/forms.py under fields, we’re using Meta.fields, which displays the

default settings of username/password, and then we explicitly added our custom field, age, too.

But we can also explicitly set which fields we want to be displayed, so let’s update it to ask for

a username/email/age/password by setting it to ('username', 'email', 'age',). We don’t

need to include the password fields because they are required! The other fields can be configured

however we choose.

Chapter 10: User Authentication 211

Code

accounts/forms.py
from django.contrib.auth.forms import UserCreationForm, UserChangeForm
from .models import CustomUser

class CustomUserCreationForm(UserCreationForm):
class Meta:

model = CustomUser
fields = (

"username",
"email",
"age",

) # new

class CustomUserChangeForm(UserChangeForm):
class Meta:

model = CustomUser
fields = (

"username",
"email",
"age",

) # new

Log out of your superuser account and try http://127.0.0.1:8000/accounts/signup/ again–

you can see the additional “Email address” field is there. Sign up with a new user account. I’ve

named mine testuser2 with an age of 18 and an email address of testuser2@email.com.

Chapter 10: User Authentication 212

New Signup Page

Click the “Sign Up” button and continue to log in. You’ll see a personalized greeting on the

homepage.

testuser2 Homepage Greeting

Switch back to the admin page, log in using our superuser account, and all three users are on

display.

Chapter 10: User Authentication 213

Three Users in the Admin

Django’s user authentication flow requires some setup. Still, you should be starting to see that it

also provides us incredible flexibility to configure the signup and login process exactly how we

want it.

Tests

The new signup page has a view, URL, and template that all should be tested. Open up the

accounts/tests.py file containing code from the last chapter for UsersManagersTests. Below

it, add a new class called SignupPageTests that we will review below.

Chapter 10: User Authentication 214

Code

accounts/tests.py
from django.contrib.auth import get_user_model
from django.test import TestCase
from django.urls import reverse # new

class UsersManagersTests(TestCase):
...

class SignupPageTests(TestCase): # new
def test_url_exists_at_correct_location_signupview(self):

response = self.client.get("/accounts/signup/")
self.assertEqual(response.status_code, 200)

def test_signup_view_name(self):
response = self.client.get(reverse("signup"))
self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, "registration/signup.html")

def test_signup_form(self):
response = self.client.post(

reverse("signup"),
{

"username": "testuser",
"email": "testuser@email.com",
"password1": "testpass123",
"password2": "testpass123",

},
)
self.assertEqual(response.status_code, 302)
self.assertEqual(get_user_model().objects.all().count(), 1)
self.assertEqual(get_user_model().objects.all()[0].username, "testuser")
self.assertEqual(
get_user_model().objects.all()[0].email, "testuser@email.com"

)

At the top, we import reverse169 to verify that the URL and view work properly. Then we create

a new class of tests called SignupPageTests. The first test checks that our signup page is at the

correct URL and returns a 200 status code. The second test checks the view, reverses signup,

which is the URL name, and then confirms a 200 status code and that our signup.html template

is being used.
169https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#reverse

https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#reverse
https://docs.djangoproject.com/en/5.0/ref/urlresolvers/#reverse

Chapter 10: User Authentication 215

The third test checks our form by sending a post request to fill it out. After the form is submitted,

we confirm the expected 302 redirect and confirm that there is now one user in the test database

with a matching username and email address. We do not check the password because Django

automatically encrypts them by default. That is why if you look in a user’s admin view, you can

change a password but can’t see the current one.

Run the tests with python manage.py test to check that everything passes as expected.

Shell

(.venv) $ python manage.py test
Found 5 test(s).
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
...
--
Ran 5 tests in 0.183s

OK
Destroying test database for alias 'default'...

Git

Before moving on to the next chapter, let’s record our work with Git and store it on GitHub.

Shell

(.venv) $ git status
(.venv) $ git add -A
(.venv) $ git commit -m "user authentication"
(.venv) $ git push origin main

Conclusion

So far, our Newspaper app has a custom user model and working signup, login, and logout pages.

But youmay have noticed that our site could look better. In the next chapter, we’ll add CSS styling

with Bootstrap and create a dedicated pages app.

Chapter 11: Bootstrap

Web development requires many skills. Not only do you have to program the website correctly,

but users also expect it to look good. Adding all the necessary HTML/CSS for a beautiful site can

be overwhelming when creating everything from scratch.

While it’s possible to hand-code all the requiredCSS and JavaScript for amodern-lookingwebsite,

in practice, most developers use a framework like Bootstrap170 or TailwindCSS171. We’ll use

Bootstrap for our project, which can be extended and customized as needed.

Pages App

In the previous chapter, we displayed our homepage by including view logic in our urls.py file.

While this approach works, it feels hackish to me, and it certainly doesn’t scale as a website

grows over time; it is also confusing to Django newcomers. Instead, we can and should create a

dedicated pages app for all of our static pages, such as the homepage, a future about page, etc.

This will keep our code nice and organized.

On the command line, use the startapp command to create our new pages app. If the server is

still running, you must type Control+c first to quit.

Shell

(.venv) $ python manage.py startapp pages

Then, immediately update our django_project/settings.py file. I often forget to do this, so it is

a good practice to think of creating a new app as a two-step process: run the startapp command,

then update INSTALLED_APPS.

170https://getbootstrap.com/
171https://tailwindcss.com/

https://getbootstrap.com/
https://tailwindcss.com/
https://getbootstrap.com/
https://tailwindcss.com/

Chapter 11: Bootstrap 217

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"accounts",
"pages", # new

]

Now, we can update our urls.py file inside the django_project directory by adding the

pages app and removing the import of TemplateView and the previous URL path for the older

homepage.

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path("admin/", admin.site.urls),
path("accounts/", include("accounts.urls")),
path("accounts/", include("django.contrib.auth.urls")),
path("", include("pages.urls")), # new

]

It’s time to add our homepage, which means Django’s standard URLs/views/templates dance.

We’ll start with the pages/urls.py file. First, create it with your text editor. Then, import our

not-yet-created views, set the route paths, and name each URL, too.

Chapter 11: Bootstrap 218

Code

pages/urls.py
from django.urls import path

from .views import HomePageView

urlpatterns = [
path("", HomePageView.as_view(), name="home"),

]

The views.py code should look familiar at this point. We’re using Django’s TemplateView generic

class-based view, meaning we only need to specify our template_name to use it.

Code

pages/views.py
from django.views.generic import TemplateView

class HomePageView(TemplateView):
template_name = "home.html"

We already have an existing home.html template. Let’s confirm it still works as expected with

our new URL and view. Start the local server python manage.py runserver and navigate to

the homepage at http://127.0.0.1:8000/ to confirm it remains unchanged. It should show the

name and age of your logged-in superuser account, which we used at the end of the last chapter.

Tests

We’ve added new code and functionality, so it is time for tests. You can never have enough tests

in your projects. Even though they take some upfront time to write, they always save you time

down the road and provide you with confidence as a project grows in complexity.

Let’s add tests to ensure our new homepage works properly. The code should look like this in

your pages/tests.py file.

Chapter 11: Bootstrap 219

Code

pages/tests.py
from django.test import SimpleTestCase
from django.urls import reverse

class HomePageTests(SimpleTestCase):
def test_url_exists_at_correct_location_homepageview(self):

response = self.client.get("/")
self.assertEqual(response.status_code, 200)

def test_homepage_view(self):
response = self.client.get(reverse("home"))
self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, "home.html")
self.assertContains(response, "Home")

On the top line, we import SimpleTestCase since our homepage does not rely on the database.

If it did, we’d have to use TestCase instead. Then, we import reverse to test our URL and view.

Our test class, HomePageTests, has two tests that check the homepage URL returns a 200 status

code and that it uses our expected URL name, template, and contains “Home” in the response.

Quit the local server with Control+c and then run our tests to confirm everything passes.

Shell

(.venv) $ python manage.py test
Found 7 test(s).
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.......
--
Ran 7 tests in 0.185s

OK
Destroying test database for alias 'default'...

Chapter 11: Bootstrap 220

Testing Philosophy

There’s no limit to what you can test in an application. For example, we could also add tests

now based on logged-in or logged-out behavior and whether the template displays the proper

content. But the 80/20 rule of 80% of consequences coming from 20% of causes applies to

testing and most other things in life. There’s no sense in making as many unit tests as possible to

test things that will likely never fail, at least for a web application. If wewereworking on a nuclear

reactor, having as many tests as possible would make sense, but the stakes are a bit lower for

most websites.

So, while you always want to add tests around new features, it’s ok to only have partial test

coverage from the beginning. As errors inevitably arise on new Git branches and features, add a

test for each so they don’t fail again. This approach is known as regression testing, where tests are

re-run each time there’s a new change to ensure that previously developed and tested software

performs as expected.

Django’s testing suite is well-suited for many unit tests and automatic regression tests, so

developers can be confident in the consistency of their projects.

Bootstrap

It’s now time to add some style to our application. If you’ve never used Bootstrap, you’re in for a

real treat. Much like Django, it accomplishes so much in so little code.

There are two ways to add Bootstrap to a project: download and serve all the files locally or rely

on a Content Delivery Network (CDN). The second approach is simpler to implement, provided

you have a consistent internet connection, so we’ll use it here.

Our template will mimic the “Starter template” provided on the Bootstrap introduction172 page

and involves adding the following:

• meta name="viewport" and content information at the top within <head>

• Bootstrap CSS link within <head>

172https://getbootstrap.com/docs/5.3/getting-started/introduction/

https://getbootstrap.com/docs/5.3/getting-started/introduction/
https://getbootstrap.com/docs/5.3/getting-started/introduction/

Chapter 11: Bootstrap 221

• Bootstrap JavaScript bundle at the bottom of the <body> section

Typing out all code yourself is recommended, but adding the Bootstrap CDN is an exception

since it is lengthy and easy to mistype. I recommend copying and pasting the Bootstrap CSS and

JavaScript Bundle links from the Bootstrap website into the base.html file.

Code

<!-- templates/base.html -->
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>{% block title %}Newspaper App{% endblock title %}</title>
<!-- Bootstrap CSS -->
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/css/
bootstrap.min.css" rel="stylesheet" integrity="sha384..."
crossorigin="anonymous">

</head>
<body>
<main>
{% block content %}
{% endblock content %}

</main>
<!-- Bootstrap JavaScript Bundle -->
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/js/
bootstrap.bundle.min.js" integrity="sha384..." crossorigin="anonymous">

</script>
</body>
</html>

This code snippet does not include the full links for Bootstrap CSS and JavaScript; it is abbrevi-

ated. Copy and paste the full links for Bootstrap 5.3 from the quick start docs173.

If you start the server again with python manage.py runserver and refresh the homepage at

http://127.0.0.1:8000/, you’ll see that the font size and link colors have changed.

Let’s add a navigation bar at the top of the page containing our links for the homepage, login,

logout, and signup pages. Notably, we can use the if/else174 tags in the Django templating engine

173https://getbootstrap.com/docs/5.3/getting-started/introduction/#quick-start
174https://docs.djangoproject.com/en/5.0/ref/templates/language/#tags

https://getbootstrap.com/docs/5.3/getting-started/introduction/#quick-start
https://docs.djangoproject.com/en/5.0/ref/templates/language/#tags
https://getbootstrap.com/docs/5.3/getting-started/introduction/#quick-start
https://docs.djangoproject.com/en/5.0/ref/templates/language/#tags

Chapter 11: Bootstrap 222

to add some basic logic. We want the “log in” and “sign up” buttons to appear for a logged-out

user and the “log out” and “change password” buttons when a user is logged in.

Again, it’s ok to copy/paste here since this book focuses on learning Django, not HTML, CSS, and

Bootstrap. If there are any formatting issues, you can view the official GitHub repository175 for

reference.

Code

<!-- templates/base.html -->
...
<body>
<nav class="navbar navbar-expand-lg bg-body-tertiary">

<div class="container-fluid">
Newspaper
<button class="navbar-toggler" type="button"
data-bs-toggle="collapse" data-bs-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent" aria-expanded="false"
aria-label="Toggle navigation">

</button>
<div class="collapse navbar-collapse" id="navbarSupportedContent">

<ul class="navbar-nav me-auto mb-2 mb-lg-0">
<li class="nav-item">
Home

{% if user.is_authenticated %}
+ New

<div class="mr-auto">

<ul class="navbar-nav">
<li class="nav-item dropdown">
<a class="nav-link dropdown-toggle" href="#" role="button"

data-bs-toggle="dropdown" aria-expanded="false">
{{ user.username }}

<ul class="dropdown-menu dropdown-menu-end">

Change password

<hr class="dropdown-divider">

175https://github.com/wsvincent/djangoforbeginners

https://github.com/wsvincent/djangoforbeginners
https://github.com/wsvincent/djangoforbeginners

Chapter 11: Bootstrap 223

<form method="post" action="{% url 'logout' %}"
style="display:inline;">
{% csrf_token %}
<button type="submit" class="btn btn-link nav-link"
style="display:inline; cursor:pointer;">Logout</button>

</form>

{% else %}

</div>
<div class="mr-auto">
<form class="form d-flex">

Log in
Sign up

</form>
</div>
{% endif %}

</div>
</div>

</nav>
<main>
<div class="container">

{% block content %}
{% endblock content %}

</div>
</main>

...

If you refresh the homepage at http://127.0.0.1:8000/, our new navbar has magically ap-

peared! Note that there are no actual links yet for new articles “+ New”; a placeholder is

represented in the code by href="#". We will add that later on. Also, note that our logged-in

username is now in the upper right corner, along with a dropdown arrow. If you click on it, there

are links for “Change password” and “Log Out.”

Chapter 11: Bootstrap 224

Homepage with Bootstrap Nav Logged In

If you click “Log Out” in the dropdown, the navbar changes to button links for either “Log In” or

“Sign Up” and the “+ New” link disappears. There is no sense in letting logged out users create

articles.

Homepage with Bootstrap Nav Logged Out

If you click on the “Log In” button in the top nav, you can also see that our login page at

http://127.0.0.1:8000/accounts/login looks better.

Bootstrap Login

The only thing that looks off is our gray “Log In” button. We can use Bootstrap to add

Chapter 11: Bootstrap 225

some nice styling, such as making it green and inviting. Change the “button” line in the

templates/registration/login.html file.

Code

<!-- templates/registration/login.html -->
{% extends "base.html" %}

{% block title %}Log In{% endblock title %}

{% block content %}
<h2>Log In</h2>
<form method="post">{% csrf_token %}
{{ form }}
<!-- new code here -->
<button class="btn btn-success ms-2" type="submit">Log In</button>
<!-- end new code -->

</form>
{% endblock content %}

Now refresh the page to see our new button in action.

Bootstrap login with New Button

Signup Form

If you click on the link for “Sign Up” you’ll see that the page has Bootstrap stylings and distracting

helper text. For example, after “Username” it says “Required. 150 characters or fewer. Letters,

digits, and @/./+/-/_ only.” So, where did that text come from? Whenever something feels like

Chapter 11: Bootstrap 226

“magic” in Django, rest assured that it is decidedly not. If you did not write the code, it exists

somewhere within Django.

The best method to figure out what’s happening under the hood in Django is to download the

source code and take a look yourself. All the code development occurs on GitHub, and you

can find the Django repo at https://github.com/django/django/176. To copy it onto your local

computer, open a new tab (Command + t) on your command line and navigate to the desired

location. Let’s navigate there now since we’ve been using a code folder on the desktop.

Shell

Windows
$ cd onedrive\desktop\code

macOS
$ cd ~/desktop/code

On the GitHub website, you’ll see a green “<> Code” button. Click it and select “GitHub CLI” to

view the command line instructions to download the repo.

176https://github.com/django/django/

https://github.com/django/django/
https://github.com/django/django/

Chapter 11: Bootstrap 227

GitHub Django Repo

On the command line, type gh repo clone django/django to copy the Django source code onto

your computer in a new directory called django.

Shell

$ gh repo clone django/django

Having the Django source code on your computer will require manual updates now and then

to stay current. After all, Django undergoes regular updates to fix bugs, improve security, and

add new features. Why not just use the built-in GitHub search? Searching on GitHub sometimes

works, but lately, it has been inconsistent, something GitHub is well aware of and working to

Chapter 11: Bootstrap 228

improve. Downloading the source code and searching yourself are valuable tools, so it is worth

taking the time to learn how to do so, as we are here.

In your text editor, open the Django source code to perform searches. For example, press

the keys command + shift + f in the VS Code text editor to do a “find” search in all files.

Type in a search for “150 characters or fewer” and you’ll find the top link to the page for

django/contrib/auth/models.py. The specific code is on line 350, and the text is part of the

auth app, on the username field for AbstractUser.

Note: We now have two command line tabs open: one for our project code and one for the Django

source code. Make sure you understand which is which. In the future, we will do additional

searches on the source code, but all code in this book requires switching back to the terminal

tab with the project source code. Switch back as we are about to add more code to our project.

We have three options now:

• override the existing help_text

• hide the help_text

• restyle the help_text

We’ll choose the third option since it’s a good way to introduce the excellent 3rd party package

django-crispy-forms177.

Working with forms is challenging, and django-crispy-formsmakes writing DRY (Don’t Repeat-

Yourself) code easier. First, stop the local server with Control+c. Then use pip to install the

package in our project. We’ll also install the Bootstrap5 template pack178.

Shell

(.venv) $ python -m pip install django-crispy-forms==2.2
(.venv) $ python -m pip install crispy-bootstrap5==2024.2

Add the new apps to our INSTALLED_APPS list in the django_project/settings.py file. As the

number of apps starts to grow, it can be helpful to distinguish between “3rd party” apps and

“local” apps. Here’s what the code looks like now.

177https://github.com/django-crispy-forms/django-crispy-forms
178https://github.com/django-crispy-forms/crispy-bootstrap5

https://github.com/django-crispy-forms/django-crispy-forms
https://github.com/django-crispy-forms/crispy-bootstrap5
https://github.com/django-crispy-forms/django-crispy-forms
https://github.com/django-crispy-forms/crispy-bootstrap5

Chapter 11: Bootstrap 229

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
3rd Party
"crispy_forms", # new
"crispy_bootstrap5", # new
Local
"accounts",
"pages",

]

And then, at the bottom of the settings.py file, add two new lines as well.

Code

django_project/settings.py
CRISPY_ALLOWED_TEMPLATE_PACKS = "bootstrap5" # new
CRISPY_TEMPLATE_PACK = "bootstrap5" # new

Now in our signup.html template, we can quickly use crispy forms. First, we load crispy_forms_-

tags at the top and then swap out {{ form }} for {{ form|crispy }}. We’ll also update the “Sign

Up” button to be green with the btn-success styling.

Chapter 11: Bootstrap 230

Code

<!-- templates/registration/signup.html -->
{% extends "base.html" %}
{% load crispy_forms_tags %}

{% block title %}Sign Up{% endblock title%}

{% block content %}
<h2>Sign Up</h2>
<form method="post">{% csrf_token %}

{{ form|crispy }}
<button class="btn btn-success" type="submit">Sign Up</button>

</form>
{% endblock content %}

We can see the new changes if you start the server again with python manage.py runserver and

refresh the signup page.

Chapter 11: Bootstrap 231

Crispy Signup Page

We can also add crispy forms to our login page. The process is the same. Here is that updated

code:

Code

<!-- templates/registration/login.html -->
{% extends "base.html" %}
{% load crispy_forms_tags %}

{% block title %}Log In{% endblock title %}

{% block content %}
<h2>Log In</h2>
<form method="post">{% csrf_token %}
{{ form|crispy }}
<button class="btn btn-success ms-2" type="submit">Log In</button>

</form>
{% endblock content %}

Chapter 11: Bootstrap 232

Refresh the login page, and the update will be visible.

Crispy Login Page

Git and requirements.txt

We have now added several packages to our Django project so it is a good time to create a

requirements.txt file.

Shell

(.venv) $ pip freeze > requirements.txt

At the moment, this is how mine looks:

Code

requirements.txt
asgiref==3.8.1
black==24.4.2
click==8.1.7
crispy-bootstrap5==2024.2
Django==5.0.6
django-crispy-forms==2.2
mypy-extensions==1.0.0
packaging==24.1
pathspec==0.12.1
platformdirs==4.2.2
sqlparse==0.5.0

Chapter 11: Bootstrap 233

Then we can add a quick Git commit to save our work in this chapter and store it on GitHub.

Shell

(.venv) $ git status
(.venv) $ git add -A
(.venv) $ git commit -m "add Bootstrap styling"
(.venv) $ git push origin main

Conclusion

Our Newspaper app looks good. To improve the look of our forms, we added Bootstrap and

Django Crispy Forms to our website. The last step of our user authentication flow is configuring

password change and reset. Again, Django has taken care of the heavy lifting, requiring aminimal

amount of code on our part.

Chapter 12: Password Change and Reset

In this chapter, we will complete the authorization flow of our Newspaper app by adding

password change and password reset functionality. We’ll implement Django’s built-in views

and URLs for password changes and resets before customizing them with our own Bootstrap-

powered templates.

Password Change

Manywebsites allow users to change their passwords, andDjango provides a default implementa-

tion that alreadyworks at this stage. To try it out, click the “Log In” button to ensure you’re logged

in. Then, navigate to the “Password change” page at http://127.0.0.1:8000/accounts/password_-

change/.

Password change

Chapter 12: Password Change and Reset 235

Enter your old password and a new one. Then click the “Change My Password” button, and you

will be redirected to the “Password change successful” page.

Password change done

Customizing Password Change

Let’s customize these two password change pages to match the look and feel of our Newspaper

site. Because Django already has created the views and URLs for us, we only need to change

the templates; however, we must use the names password_change_form.html and password_-

change_done.html. In your text editor, create two new template files in the registration

directory:

• templates/registration/password_change_form.html

• templates/registration/password_change_done.html

Update password_change_form.html with the following code. At the top, we extend base.html,

load crispy forms, and set our page meta title, which appears in the tab of a web browser but not

on the visible webpage itself. The form uses POST since we send data, a csrf_token for security

reasons, and {{ form|crispy }} to use crispy forms styling. As a final tweak, we include a submit

button that uses Bootstrap’s btn btn-success styling to make it green.

Chapter 12: Password Change and Reset 236

Code

<!-- templates/registration/password_change_form.html -->
{% extends "base.html" %}
{% load crispy_forms_tags %}

{% block title %}Password Change{% endblock title %}

{% block content %}
<h1>Password change</h1>
<p>Please enter your old password, for security's sake, and then enter
your new password twice so we can verify you typed it in correctly.</p>

<form method="POST">{% csrf_token %}
{{ form|crispy }}
<input class="btn btn-success" type="submit"
value="Change my password">

</form>
{% endblock content %}

Load the page at http://127.0.0.1:8000/accounts/password_change/) to see our changes.

New password change form

Chapter 12: Password Change and Reset 237

Next up is the password_change_done template. It also extends base.html and includes a new

meta title; however, there’s no form on the page, just new text.

Code

<!-- templates/registration/password_change_done.html -->
{% extends "base.html" %}

{% block title %}Password Change Successful{% endblock title %}

{% block content %}
<h1>Password change successful</h1>
<p>Your password was changed.</p>
{% endblock content %}

This updated page is at:

http://127.0.0.1:8000/accounts/password_change/done/

New password change done

That wasn’t too bad, right? Certainly, it was much less work than creating everything from

scratch, especially all the code around securely updating a user’s password. Next up is the

password reset functionality.

Password Reset

Password reset handles the typical case of users forgetting their passwords. The steps are

very similar to configuring password change, as we just did. Django already provides a default

implementation that we will use, and then we will customize the templates to match the look

and feel of the rest of our site.

Chapter 12: Password Change and Reset 238

The only configuration required is telling Django how to send emails. After all, a user can only

reset a password if they can access the email linked to the account. For testing purposes, we can

rely on Django’s console backend179 setting, which outputs the email text to our command-line

console instead.

Add the following one-line change at the bottom of the django_project/settings.py file.

Code

django_project/settings.py
EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend" # new

And we’re all set! Django will take care of all the rest for us. Let’s try it out. Navigate to

http://127.0.0.1:8000/accounts/password_reset/ to view the default password reset page.

Default password reset page

Make sure the email address you enter matches one of your existing user accounts. Recall that

testuser does not have a linked email account, so you should use testuser2, which, if you follow

my example, has an email address of testuser2@email.com. Upon submission, you’ll then be

redirected to the password reset done page at:

http://127.0.0.1:8000/accounts/password_reset/done/

179https://docs.djangoproject.com/en/5.0/topics/email/#console-backend

https://docs.djangoproject.com/en/5.0/topics/email/#console-backend
https://docs.djangoproject.com/en/5.0/topics/email/#console-backend

Chapter 12: Password Change and Reset 239

Default password reset done page

This page says to check our email. Since we’ve told Django to send emails to the command line

console, the email text will now be there. In my console, I see the following:

Shell

Content-Type: text/plain; charset="utf-8"
MIME-Version: 1.0
Content-Transfer-Encoding: 8bit
Subject: Password reset on 127.0.0.1:8000
From: webmaster@localhost
To: testuser2@email.com
Date: Fri, 28 Jun 2024 15:36:30 -0000
Message-ID:
<168235059067.94136.7639058137157368290@1.0.0.0.0....0.0.0.ip6.arpa>

You're receiving this email because you requested a password reset for your user
account at 127.0.0.1:8000.

Please go to the following page and choose a new password:

http://127.0.0.1:8000/accounts/reset/Mw/bn63cu-b77b6590a2e38a75c4b2af244c40297e/

Your username, in case you've forgotten: testuser2

Thanks for using our site!

The 127.0.0.1:8000 team

[11/Jun/2024 15:36:30] "POST /accounts/password_reset/ HTTP/1.1" 302 0
[11/Jun/2024 15:36:30] "GET /accounts/password_reset/done/ HTTP/1.1" 200 3014

Chapter 12: Password Change and Reset 240

Your email text should be identical except for three lines:

• the “To” on the sixth line contains the email address of the user

• the URL link contains a secure token that Django randomly generates for us and can be

used only once

• the username which we’re helpfully reminded of by Django

We will customize all of the default email text shortly, but for now, focus on finding the link

provided and entering it into your web browser. In this example, mine is:

http://127.0.0.1:8000/accounts/reset/Mw/bn63cu-b77b6590a2e38a75c4b2af244c40297e/

You’ll be redirected to the “Password reset confirmation” page.

Default password reset confirmation

Enter a new password and click the “Change my password” button. This final step will redirect

you to the “Password reset complete” page.

Chapter 12: Password Change and Reset 241

Default password reset complete

To confirm everything worked, click the “Log in” link and use your new password. It should work.

Custom Templates

As with the password change pages, we can create new templates to customize the look and feel

of the entire password reset flow. If you noticed, four separate templates are used. Create these

new files now in your templates/registration/ directory.

• templates/registration/password_reset_form.html

• templates/registration/password_reset_done.html

• templates/registration/password_reset_confirm.html

• templates/registration/password_reset_complete.html

Start with the password reset form, which is password_reset_form.html. At the top, we extend

base.html, load crispy_forms_tags, and set the meta page title. Because we used “block” titles

in our base.html file, we can override them here. The form uses POST since we send data, a

csrf_token for security reasons, and {{ form|crispy }} for the forms. And we again updated

the submit button to green. At this point, updating these template pages should start to feel

familiar.

Chapter 12: Password Change and Reset 242

Code

<!-- templates/registration/password_reset_form.html -->
{% extends "base.html" %}
{% load crispy_forms_tags %}

{% block title %}Forgot Your Password?{% endblock title %}

{% block content %}
<h1>Forgot your password?</h1>
<p>Enter your email address below, and we'll email instructions
for setting a new one.</p>

<form method="POST">{% csrf_token %}
{{ form|crispy }}
<input class="btn btn-success" type="submit"
value="Send me instructions!">

</form>
{% endblock content %}

Start up the server again with python manage.py runserver and navigate to:

http://127.0.0.1:8000/accounts/password_reset/

Refresh the page, and you will see our new page.

New password reset

Now we can update the other three pages. Each involves extending base.html, setting a new

meta title, and adding new content text. When a form is involved, we switch to loading and using

crispy forms.

Let’s begin with the password_reset_done.html template.

Chapter 12: Password Change and Reset 243

Code

<!-- templates/registration/password_reset_done.html -->
{% extends "base.html" %}

{% block title %}Email Sent{% endblock title %}

{% block content %}
<h1>Check your inbox.</h1>
<p>We've emailed you instructions for setting your password.
You should receive the email shortly!</p>
{% endblock content %}

Confirm the changes by going to http://127.0.0.1:8000/accounts/password_reset/done/.

New reset done

Next up is password_reset_confirm.html. Note that it has a form so we’ll use crispy forms here.

Code

<!-- templates/registration/password_reset_confirm.html -->
{% extends "base.html" %}
{% load crispy_forms_tags %}

{% block title %}Enter new password{% endblock title %}

{% block content %}
<h1>Set a new password!</h1>
<form method="POST">{% csrf_token %}

{{ form|crispy }}
<input class="btn btn-success" type="submit" value="Change my password">

</form>
{% endblock content %}

In the command line, grab the URL link from the custom email previously outputted to the

console, and you’ll see the following:

Chapter 12: Password Change and Reset 244

New set password

Finally, here is the password reset complete code:

Code

<!-- templates/registration/password_reset_complete.html -->
{% extends "base.html" %}

{% block title %}Password reset complete{% endblock title %}

{% block content %}
<h1>Password reset complete</h1>
<p>Your new password has been set.</p>
<p>You can log in now on the
Log In page.</p>
{% endblock content %}

You can view it at http://127.0.0.1:8000/accounts/reset/done/.

New password reset complete

Try It Out

Let’s confirm everything is working by resetting the password for the testuser2 account. Log

out of your current account and head to the login page–the logical location for a “Forgot your

Chapter 12: Password Change and Reset 245

password?” link that sends a user into the password reset section. Let’s add that link now.

First, we’ll need to add the password reset link to the existing login page since we can’t assume

the user will know the correct URL! That goes on the bottom of the form.

Code

<!-- templates/registration/login.html -->
{% extends "base.html" %}
{% load crispy_forms_tags %}

{% block title %}Log In{% endblock title %}

{% block content %}
<h2>Log In</h2>
<form method="post">{% csrf_token %}
{{ form|crispy }}
<button class="btn btn-success ms-2" type="submit">Log In</button>

</form>
<!-- new code here -->
<p>Forgot your password?</p>
<!-- end new code -->
{% endblock content %}

Refresh the login webpage to confirm the new “Forgot your password?” link is there.

Forgot Your Password link

Click on the link to bring up the password reset template and complete the flow using the email

for testuser2@email.com. Remember that the unique linkwill be outputted to your console. Set a

new password and use it to log in to the testuser2 account. Everything should work as expected.

Chapter 12: Password Change and Reset 246

Git

Another chunk of work has been completed. Use Git to save our work before continuing.

Shell

(.venv) $ git status
(.venv) $ git add -A
(.venv) $ git commit -m "password change and reset"
(.venv) $ git push origin main

Conclusion

In the next chapter, we will build out our actual Newspaper app that displays articles.

Chapter 13: Articles App

It’s time to build out ourNewspaper app. We will have an articles page where journalists can post

articles, set up permissions so only the author of an article can edit or delete it, and finally add

the ability for other users to write comments on each article.

Articles App

To start, create an articles app and define the databasemodels. There are no hard and fast rules

around what to name your apps except that you can’t use the name of a built-in app. If you look

at the INSTALLED_APPS section of django_project/settings.py, you can see which app names

are off-limits:

• admin

• auth

• contenttypes

• sessions

• messages

• staticfiles

A general rule of thumb is to use the plural of an app name: posts, payments, users, etc. One

exception would be when doing so is obviously wrong, such as blogs. In this case, using the

singular blogmakes more sense.

Start by creating our new articles app.

Chapter 13: Articles App 248

Shell

(.venv) $ python manage.py startapp articles

Then add it to our INSTALLED_APPS and update the time zone, TIME_ZONE, lower down in the

settings since we’ll be timestamping our articles. You can find your time zone in this Wikipedia

list180. For example, I live in Boston, MA, in the Eastern time zone of the United States; therefore,

my entry is America/New_York.

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
3rd Party
"crispy_forms",
"crispy_bootstrap5",
Local
"accounts",
"pages",
"articles", # new

]

TIME_ZONE = "America/New_York" # new

Next, we define our database model, which contains four fields: title, body, date, and author.

We’re letting Django automatically set the time and date based on our TIME_ZONE setting. For

the author field, we want to reference our custom user model181 "accounts.CustomUser" which

we set in the django_project/settings.py file as AUTH_USER_MODEL. We will also implement the

best practice of defining a get_absolute_url and a __str__method for viewing themodel in our

admin interface.

180https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
181https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.get_user_model

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.get_user_model
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.get_user_model

Chapter 13: Articles App 249

Code

articles/models.py
from django.conf import settings
from django.db import models
from django.urls import reverse

class Article(models.Model):
title = models.CharField(max_length=255)
body = models.TextField()
date = models.DateTimeField(auto_now_add=True)
author = models.ForeignKey(

settings.AUTH_USER_MODEL,
on_delete=models.CASCADE,

)

def __str__(self):
return self.title

def get_absolute_url(self):
return reverse("article_detail", kwargs={"pk": self.pk})

There are two ways to refer to a custom user model: AUTH_USER_MODEL and get_user_model182.

As general advice:

• AUTH_USER_MODELmakes sense for references within a models.py file

• get_user_model() is recommended everywhere else, such as views, tests, etc.

Since we have a new app and model, it’s time to make a new migration file and apply it to the

database.

182https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.get_user_model

https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/5.0/topics/auth/customizing/#django.contrib.auth.get_user_model

Chapter 13: Articles App 250

Shell

(.venv) $ python manage.py makemigrations articles
Migrations for 'articles':
articles/migrations/0001_initial.py
- Create model Article

(.venv) $ python manage.py migrate
Operations to perform:
Apply all migrations: accounts, admin, articles, auth, contenttypes, sessions

Running migrations:
Applying articles.0001_initial... OK

At this point, I like to jump into the admin to play around with the model before building out the

URLs/views/templates needed to display the data on the website. But first, we need to update

articles/admin.py so our new app is displayed.

Code

articles/admin.py
from django.contrib import admin
from .models import Article

admin.site.register(Article)

Now, we start the server.

Shell

(.venv) $ python manage.py runserver

Navigate to the admin at http://127.0.0.1:8000/admin/ and log in.

Chapter 13: Articles App 251

Admin Page

If you click “+ Add” next to “Articles” at the top of the page, we can enter some sample data. You’ll

likely have three users available: your superuser, testuser, and testuser2 accounts. Create new

articles using your superuser account as the author. I’ve added three new articles, as you can

see on the updated Articles page.

Chapter 13: Articles App 252

Admin Three Articles

But wouldn’t it be nice to see a little more information in the admin about each article? We can

quickly do that by updating articles/admin.py with list_display183.

Code

articles/admin.py
from django.contrib import admin
from .models import Article

class ArticleAdmin(admin.ModelAdmin):
list_display = [

"title",
"body",
"author",

]

admin.site.register(Article, ArticleAdmin)

183https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display

https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display

Chapter 13: Articles App 253

We’ve extended ModelAdmin, a class that represents a model in the admin interface, and specified

our fields to list with list_display. At the bottom of the file we registered ArticleAdmin along

with the Articlemodel we imported at the top. There are many customizations available in the

Django admin, so the official docs are worth a close read.

Admin Three Articles with Description

If you click on an individual article, you will see that the title, body, and author are displayed

but not the date, even though we defined a date field in our model. That’s because the date

was automatically added by Django for us and, therefore, can’t be changed in the admin. We

could make the date editable–in more complex apps, it’s common to have both a created_at

and updated_at attribute–but to keep things simple, we’ll have the date be set upon creation

by Django for us for now. Even though date is not displayed here, we can still access it in our

templates for display on web pages.

URLs and Views

The next step is to configure our URLs and views. Let’s have our articles appear at articles/.

Add a URL pattern for articles in our django_project/urls.py file.

Chapter 13: Articles App 254

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path("admin/", admin.site.urls),
path("accounts/", include("accounts.urls")),
path("accounts/", include("django.contrib.auth.urls")),
path("articles/", include("articles.urls")), # new
path("", include("pages.urls")),

]

Next, we create a new articles/urls.py file in the text editor and populate it with our routes.

Let’s start with the page to list all articles at articles/, which will use the view ArticleListView.

Code

articles/urls.py
from django.urls import path

from .views import ArticleListView

urlpatterns = [
path("", ArticleListView.as_view(), name="article_list"),

]

Now, create our viewusing the built-in generic ListView fromDjango. The only two attributeswe

need to specify are the model Article and our template name, which will be article_list.html.

Chapter 13: Articles App 255

Code

articles/views.py
from django.views.generic import ListView

from .models import Article

class ArticleListView(ListView):
model = Article
template_name = "article_list.html"

The last step is to create a new template file in the text editor called templates/article_-

list.html. Bootstrap has a built-in component called Cards184 that we can customize for our

individual articles. Recall that ListView returns an object with <model_name>_list that we can

iterate using a for loop.

We display each article’s title, body, author, and date. We can even provide links to the “detail”,

“edit”, and “delete” pages that we haven’t built yet.

Code

<!-- templates/article_list.html -->
{% extends "base.html" %}

{% block title %}Articles{% endblock title %}

{% block content %}
{% for article in article_list %}
<div class="card">
<div class="card-header">

{{ article.title }}

 ·
by {{ article.author }} |

{{ article.date }}
</div>
<div class="card-body">
{{ article.body }}

</div>
<div class="card-footer text-center text-muted">
184https://getbootstrap.com/docs/5.3/components/card/

https://getbootstrap.com/docs/5.3/components/card/
https://getbootstrap.com/docs/5.3/components/card/

Chapter 13: Articles App 256

Edit Delete
</div>

</div>

{% endfor %}
{% endblock content %}

Start the server again and check out our page at http://127.0.0.1:8000/articles/.

Articles page

Not bad, eh? If we wanted to get fancy, we could create a custom template filter185 so that the

date outputted is shown in seconds, minutes, or days. This can be done with some if/else logic

and Django’s date options186, but we won’t implement it here.

185https://docs.djangoproject.com/en/5.0/howto/custom-template-tags/
186https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#date

https://docs.djangoproject.com/en/5.0/howto/custom-template-tags/
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#date
https://docs.djangoproject.com/en/5.0/howto/custom-template-tags/
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#date

Chapter 13: Articles App 257

Detail/Edit/Delete

The next step is to add detail, edit, and delete options for the articles. That means new URLs,

views, and templates. Let’s start with the URLs. The Django ORM automatically adds a primary

key to each database entry, meaning that the first article has a pk value of 1, the second of 2, and

so on. We can use this to craft our URL paths.

For our detail page, we want the route to be at articles/<int:pk>. The int here is a path

converter187 and essentially tells Django that we want this value to be treated as an integer

and not another data type like a string. Therefore, the URL route for the first article will be

articles/1/. Since we are in the articles app, all URL routes will be prefixed with articles/

because we set that in django_project/urls.py. We only need to add the <int:pk> part here.

Next up are the edit and delete routes that will also use the primary key. They will be at the URL

routes articles/1/edit/ and articles/1/delete/ with the primary key of 1. Here is how the

updated articles/urls.py file should look.

Code

articles/urls.py
from django.urls import path

from .views import (
ArticleListView,
ArticleDetailView, # new
ArticleUpdateView, # new
ArticleDeleteView, # new

)

urlpatterns = [
path("<int:pk>/", ArticleDetailView.as_view(),

name="article_detail"), # new
path("<int:pk>/edit/", ArticleUpdateView.as_view(),

name="article_edit"), # new
path("<int:pk>/delete/", ArticleDeleteView.as_view(),

name="article_delete"), # new
path("", ArticleListView.as_view(),

name="article_list"),
]

187https://docs.djangoproject.com/en/5.0/topics/http/urls/#path-converters

https://docs.djangoproject.com/en/5.0/topics/http/urls/#path-converters
https://docs.djangoproject.com/en/5.0/topics/http/urls/#path-converters
https://docs.djangoproject.com/en/5.0/topics/http/urls/#path-converters

Chapter 13: Articles App 258

Wewill use Django’s generic class-based views for DetailView, UpdateView, and DeleteView. The

detail view only requires listing the model and template name. For the update/edit view, we also

add the specific attributes–title and body–that can be changed. And for the delete view, we

must add a redirect for where to send the user after deleting the entry. That requires importing

reverse_lazy and specifying the success_url along with a corresponding named URL.

Code

articles/views.py
from django.views.generic import ListView, DetailView # new
from django.views.generic.edit import UpdateView, DeleteView # new
from django.urls import reverse_lazy # new
from .models import Article

class ArticleListView(ListView):
model = Article
template_name = "article_list.html"

class ArticleDetailView(DetailView): # new
model = Article
template_name = "article_detail.html"

class ArticleUpdateView(UpdateView): # new
model = Article
fields = (

"title",
"body",

)
template_name = "article_edit.html"

class ArticleDeleteView(DeleteView): # new
model = Article
template_name = "article_delete.html"
success_url = reverse_lazy("article_list")

If you recall the acronym CRUD (Create-Read-Update-Delete), you’ll see that we are implement-

ing three of the four functionalities here. We’ll add the fourth, for create, later in this chapter.

Almost every website uses CRUD, and this pattern will quickly feel natural when using Django or

Chapter 13: Articles App 259

any other web framework.

The URL paths and views are done, so the final step is to add templates. Create three new

template files in your text editor:

• templates/article_detail.html

• templates/article_edit.html

• templates/article_delete.html

We’ll start with the details page, which displays the title, date, body, and author and links to edit

and delete. It also links back to all articles. DetailView automatically names the context object

either object or the lowercase model name. Recall that the Django templating language’s url tag

wants the URL name, and any arguments are passed in.

The name of our edit route is article_edit, and we need to use its primary key, article.pk.

The delete route name is article_delete, and requires a primary key, article.pk. Our articles

page is a ListView, so it does not require any additional arguments passed in.

Code

<!-- templates/article_detail.html -->
{% extends "base.html" %}

{% block content %}
<div class="article-entry">

<h2>{{ object.title }}</h2>
<p>by {{ object.author }} | {{ object.date }}</p>
<p>{{ object.body }}</p>

</div>
<div>
<p>Edit
Delete

</p>
<p>Back to All Articles.</p>

</div>
{% endblock content %}

For the edit and delete pages, we can use Bootstrap’s button styling188 to make the edit button

light blue and the delete button red.

188https://getbootstrap.com/docs/5.3/components/buttons/

https://getbootstrap.com/docs/5.3/components/buttons/
https://getbootstrap.com/docs/5.3/components/buttons/

Chapter 13: Articles App 260

Code

<!-- templates/article_edit.html -->
{% extends "base.html" %}
{% load crispy_forms_tags %}

{% block content %}
<h1>Edit</h1>
<form action="" method="post">{% csrf_token %}

{{ form|crispy }}
<button class="btn btn-info ms-2" type="submit">Update</button>

</form>
{% endblock content %}

Code

<!-- templates/article_delete.html -->
{% extends "base.html" %}

{% block content %}
<h1>Delete</h1>
<form action="" method="post">{% csrf_token %}
<p>Are you sure you want to delete "{{ article.title }}"?</p>
<button class="btn btn-danger ms-2" type="submit">Confirm</button>

</form>
{% endblock content %}

As a final step, in article_list.html, we can now add URL routes for detail, edit, and delete

pages to replace the existing placeholders. We can use the get_absolute_url

method defined in our model for the detail page. And we can use the url189 template tag, the URL

name, and the pk of each article for the edit and delete links.

189https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#url

https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#url
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#url

Chapter 13: Articles App 261

Code

<!-- templates/article_list.html -->
{% extends "base.html" %}

{% block title %}Articles{% endblock title %}

{% block content %}
{% for article in article_list %}
<div class="card">
<div class="card-header">

<!-- add link here! -->
{{ article.title }}

 ·
by {{ article.author }} |

{{ article.date }}
</div>
<div class="card-body">
{{ article.body }}

</div>
<div class="card-footer text-center text-muted">
<!-- new links here! -->
Edit
Delete

</div>
</div>

{% endfor %}
{% endblock content %}

Ok,we’re ready to viewourwork. Start the serverwith python manage.py runserver andnavigate

to the articles list page at http://127.0.0.1:8000/articles/. Click the “Edit” link next to the

first article, and you’ll be redirected to http://127.0.0.1:8000/articles/1/edit/.

Chapter 13: Articles App 262

Edit Page

If you update the “Title” attribute by adding “(edited)” at the end and click “Update”, you’ll be

redirected to the detail page, which shows the new change.

Detail Page

You’ll be redirected to the delete page if you click the “Delete” link.

Chapter 13: Articles App 263

Delete Page

Press the scary red button for “Confirm.” You’ll be redirected to the articles page, which now has

only two entries.

Articles Page Two Entries

Create Page

The final step is to create a page for new articles, which we can implement with Django’s built-

in CreateView. Our three steps are to create a view, URL, and template. This flow should feel

familiar by now.

In the articles/views.py file, add CreateView to the imports at the top and create a new class

Chapter 13: Articles App 264

called ArticleCreateView at the bottom of the file that specifies our model, template, and the

fields available.

Code

articles/views.py
...
from django.views.generic.edit import (
UpdateView, DeleteView, CreateView # new

)
...
class ArticleCreateView(CreateView): # new

model = Article
template_name = "article_new.html"
fields = (

"title",
"body",
"author",

)

Note that our fields attribute has author sincewewant to associate a new articlewith an author;

however, once an article has been created, we do not want a user to be able to change the author,

which is why ArticleUpdateView only has the attributes ['title', 'body',].

Now, update the articles/urls.py file with the new route for the view.

Code

articles/urls.py
from django.urls import path

from .views import (
ArticleListView,
ArticleDetailView,
ArticleUpdateView,
ArticleDeleteView,
ArticleCreateView, # new

)

urlpatterns = [
path("<int:pk>/",

ArticleDetailView.as_view(), name="article_detail"),
path("<int:pk>/edit/",

ArticleUpdateView.as_view(), name="article_edit"),

Chapter 13: Articles App 265

path("<int:pk>/delete/",
ArticleDeleteView.as_view(), name="article_delete"),

path("new/", ArticleCreateView.as_view(), name="article_new"), # new
path("", ArticleListView.as_view(), name="article_list"),

]

To complete the new create functionality, add a template named templates/article_new.html

and update it with the following HTML code.

Code

<!-- templates/article_new.html -->
{% extends "base.html" %}
{% load crispy_forms_tags %}

{% block content %}
<h1>New article</h1>
<form action="" method="post">{% csrf_token %}

{{ form|crispy }}
<button class="btn btn-success ms-2" type="submit">Save</button>

</form>
{% endblock content %}

Additional Links

We should add the URL link for creating new articles to our navbar so that logged-in users can

access it everywhere on the site.

Chapter 13: Articles App 266

Code

<!-- templates/base.html -->
...
{% if user.is_authenticated %}
<a href="{% url 'article_new' %}"
class="nav-link px-2 link-dark">+ New

...

Refreshing the webpage and clicking “+ New” will redirect to the create new article page.

New Article Page

One final link to add is tomake the articles list page accessible from the home page. A user would

need to knowor guess that it is located at http://127.0.0.1:8000/articles/, butwe can fix that

by adding a button link to the templates/home.html file.

Chapter 13: Articles App 267

Code

<!-- templates/home.html -->
{% extends "base.html" %}

{% block title %}Home{% endblock title %}

{% block content %}
{% if user.is_authenticated %}
Hi {{ user.username }}! You are {{ user.age }} years old.
<form action="{% url 'logout' %}" method="post">
{% csrf_token %}
<button type="submit">Log Out</button>

</form>

<p>
View all articles</p> <!-- new -->

{% else %}
<p>You are not logged in</p>
Log In |
Sign Up
{% endif %}
{% endblock content %}

Refresh the homepage and the button will appear and work as intended.

Homepage with All Articles Link

If you need help to make sure your HTML file is accurate now, please refer to the official source

code190.
190https://github.com/wsvincent/djangoforbeginners/

https://github.com/wsvincent/djangoforbeginners/
https://github.com/wsvincent/djangoforbeginners/
https://github.com/wsvincent/djangoforbeginners/

Chapter 13: Articles App 268

Git

We added quite a lot of new code in this chapter, so let’s save it with Git before proceeding to

the next chapter.

Shell

(.venv) $ git status
(.venv) $ git add -A
(.venv) $ git commit -m "newspaper app"
(.venv) $ git push origin main

Conclusion

We have now created a dedicated articles app with CRUD functionality. Articles can be created,

read, updated, deleted, and even viewed as an entire list. But there are no permissions or

authorizations yet, which means anyone can do anything! If logged-out users know the correct

URLs, they can edit an existing article or delete one, even one that’s not theirs! In the next

chapter, we will add permissions and authorizations to our project to fix this.

Chapter 14: Permissions and Authorization

There are several issues with our current Newspaper website. For one thing, we want our

newspaper to be financially sustainable. With more time, we could add a dedicated payments

app to charge for access. But at a minimum, we want to add rules around permissions and

authorization, such as requiring users to log in to view articles. As a mature web framework,

Django has built-in authorization functionality that we can use to restrict access to the articles

list page and add additional restrictions so that only the author of an article can edit or delete it.

Improved CreateView

Currently, the author on a new article can be set to any existing user. Instead, it should be

automatically set to the currently logged-in user. We can modify Django’s CreateView to achieve

this by removing the author field and instead setting it automatically via the form_validmethod.

Code

articles/views.py
class ArticleCreateView(CreateView):

model = Article
template_name = "article_new.html"
fields = ("title", "body") # new

def form_valid(self, form): # new
form.instance.author = self.request.user
return super().form_valid(form)

How did I know I could update CreateView like this? The answer is that I looked at the source

code and used Classy Class-Based Views191, an amazing resource that breaks down how each

generic class-based view works in Django. Generic class-based views are great, but when you

want to customize them, you must roll up your sleeves and understand what’s happening under

191https://ccbv.co.uk/

https://ccbv.co.uk/
https://ccbv.co.uk/

Chapter 14: Permissions and Authorization 270

the hood. This is the downside of class-based vs. function-based views: more is hidden, and the

inheritance chainmust be understood. Themore you use and customize built-in views, themore

comfortable you will become with making customizations like this. Generally, a specific method,

like form_valid, can be overridden to achieve your desired result instead of having to rewrite

everything from scratch yourself.

Now reload the browser and try clicking on the “+ New” link in the top nav. It will redirect to the

updated create page where author is no longer a field.

New article link

If you create a new article and go into the admin, you will see it is automatically set to the

currently logged-in user.

Authorizations

There are multiple issues related to the lack of authorizations for our current project. We want

to restrict access to only users so we can one-day charge readers to access our newspaper. But

Chapter 14: Permissions and Authorization 271

beyond that, any random logged-out user who knows the correct URL can access any part of the

site.

Consider what would happen if a logged-out user tried to create a new article. To try it out,

click on your username in the upper right corner of the navbar, then select “Log Out” from the

dropdown options. The “+ New” link disappears from the navbar, but what happens if you go to

it directly: http://127.0.0.1:8000/articles/new/.

The page is still there.

Logged out new

Now, try to create a new article with a title and body. Then, click on the “Save” button.

Chapter 14: Permissions and Authorization 272

Create page error

An error! This is because our model expects an author field that is linked to the currently logged-

in user. But since we are not logged in, there’s no author, so the submission fails. What to do?

Mixins

Wewant to set some authorizations so only logged-in users can access specific URLs. To do this,

we can use a mixin, a special kind of multiple inheritance that Django uses to avoid duplicate

code and still allow customization. For example, the built-in generic ListView192 needs a way to

return a template. But so does DetailView193 and almost every other view. Rather than repeat the

same code in each big generic view, Django breaks out this functionality into a mixin known as

192https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-display/#django.views.generic.list.

ListView
193https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-display/#detailview

https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-display/#django.views.generic.list.ListView
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-display/#detailview
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-display/#django.views.generic.list.ListView
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-display/#django.views.generic.list.ListView
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-display/#detailview

Chapter 14: Permissions and Authorization 273

TemplateResponseMixin194. Both ListView and DetailView use this mixin to render the proper

template.

You’ll seemixins used everywhere if you read the Django source code, which is freely available on

Github195. To restrict view access to only logged-in users, Django has a LoginRequired mixin196

that we can use. It’s powerful and extremely concise.

In the articles/views.py file, import LoginRequiredMixin and add it to ArticleCreateView.

Make sure that the mixin is to the left of CreateView so it will be read first. We want the

CreateView to know we intend to restrict access.

And that’s it! We’re done.

Code

articles/views.py
from django.contrib.auth.mixins import LoginRequiredMixin # new
from django.views.generic import ListView, DetailView
...

class ArticleCreateView(LoginRequiredMixin, CreateView): # new
...

Return to the homepage at http://127.0.0.1:8000/ to avoid resubmitting the form. Navigate

to http://127.0.0.1:8000/articles/new/ again to access the URL route for a new article.

194https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-simple/#templateresponsemixin
195https://github.com/django/django
196https://docs.djangoproject.com/en/5.0/topics/auth/default/#the-loginrequired-mixin

https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-simple/#templateresponsemixin
https://github.com/django/django
https://github.com/django/django
https://docs.djangoproject.com/en/5.0/topics/auth/default/#the-loginrequired-mixin
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-simple/#templateresponsemixin
https://github.com/django/django
https://docs.djangoproject.com/en/5.0/topics/auth/default/#the-loginrequired-mixin

Chapter 14: Permissions and Authorization 274

Log In Redirect Page

What’s happening? Django automatically redirected users to the login page! If you look closely,

the URL is http://127.0.0.1:8000/accounts/login/?next=/articles/new/, which shows we

tried to go to articles/new/ but were instead redirected to log in.

LoginRequiredMixin

Restricting view access requires adding LoginRequiredMixin at the beginning of all existing

views. Let’s update the rest of our articles views since we don’t want a user to be able to create,

read, update, or delete an article if they aren’t logged in.

The complete views.py file should now look like this:

Chapter 14: Permissions and Authorization 275

Code

articles/views.py
from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import ListView, DetailView
from django.views.generic.edit import CreateView, UpdateView, DeleteView
from django.urls import reverse_lazy

from .models import Article

class ArticleListView(LoginRequiredMixin, ListView): # new
model = Article
template_name = "article_list.html"

class ArticleDetailView(LoginRequiredMixin, DetailView): # new
model = Article
template_name = "article_detail.html"

class ArticleUpdateView(LoginRequiredMixin, UpdateView): # new
model = Article
fields = (

"title",
"body",

)
template_name = "article_edit.html"

class ArticleDeleteView(LoginRequiredMixin, DeleteView): # new
model = Article
template_name = "article_delete.html"
success_url = reverse_lazy("article_list")

class ArticleCreateView(LoginRequiredMixin, CreateView):
model = Article
template_name = "article_new.html"
fields = ("title", "body",)

def form_valid(self, form):
form.instance.author = self.request.user
return super().form_valid(form)

Chapter 14: Permissions and Authorization 276

Play around with the site to confirm that redirecting to the login works as expected. If you need

help recalling the proper URLs, log in first and write down the URLs for each route to create,

edit, delete, and list all articles.

UpdateView and DeleteView

We’re progressing, but our edit and delete views are still an issue. Any logged-in user can change

any article, but wewant to restrict this access so that only the article’s author has this permission.

We could add permissions logic to each view for this, but a more elegant solution is to create

a dedicated mixin, a class with a particular feature we want to reuse in our Django code. And

better yet, Django ships with a built-in mixin, UserPassesTestMixin197, just for this purpose!

To use UserPassesTestMixin, first, import it at the top of the articles/views.py file and then

add it to both the update and delete viewswherewewant this restriction. The test_funcmethod

is used by UserPassesTestMixin for our logic; we need to override it. In this case, we set the

variable obj to the current object returned by the view using get_object(). Then we say, if the

author on the current object matches the current user on the webpage (whoever is logged in

and trying to make the change), then allow it. If false, an error will automatically be thrown.

The code looks like this:

Code

articles/views.py
from django.contrib.auth.mixins import (

LoginRequiredMixin,
UserPassesTestMixin # new

)
from django.views.generic import ListView, DetailView
from django.views.generic.edit import UpdateView, DeleteView, CreateView
from django.urls import reverse_lazy

from .models import Article
...
class ArticleUpdateView(
LoginRequiredMixin, UserPassesTestMixin, UpdateView): # new

197https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.mixins.

UserPassesTestMixin

https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.mixins.UserPassesTestMixin
https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.mixins.UserPassesTestMixin
https://docs.djangoproject.com/en/5.0/topics/auth/default/#django.contrib.auth.mixins.UserPassesTestMixin

Chapter 14: Permissions and Authorization 277

model = Article
fields = (

"title",
"body",

)
template_name = "article_edit.html"

def test_func(self): # new
obj = self.get_object()
return obj.author == self.request.user

class ArticleDeleteView(
LoginRequiredMixin, UserPassesTestMixin, DeleteView): # new

model = Article
template_name = "article_delete.html"
success_url = reverse_lazy("article_list")

def test_func(self): # new
obj = self.get_object()
return obj.author == self.request.user

The order is critical when using mixins with class-based views. LoginRequiredMixin comes first

so that we force login, then add UserPassesTestMixin for an additional layer of functionality, and

finally, either UpdateView or DeleteView. The code will only work properly if you have this order.

Log in with your testuser account and go to the articles list page. If the code works, you should

not be able to edit or delete any posts written by your superuser account; instead, you will see a

Permission Denied 403 error page.

403 error page

However, if you create a new article with testuser, you will be able to edit and delete it. And if

you log in with your superuser account instead, you can edit and delete posts written by that

author.

Chapter 14: Permissions and Authorization 278

Template Logic

Although we have successfully restricted access to the “edit” and “delete” pages for each article,

they are still on the list all articles page and the individual article page. It would be better not to

display them to users who cannot access them. In other words, we want to restrict their display

to only the author of an article.

We can add simple logic to our article_list and article_detail template files by using the

built-in if198 filter so that only the article author can see the edit and delete links.

Code

<!-- templates/article_list.html -->
...
<div class="card-footer text-center text-muted">
<!-- new code here -->
{% if article.author.pk == request.user.pk %}
Edit
Delete
{% endif %} <!-- new code here -->

</div>
...

Code

<!-- templates/article_detail.html -->
{% extends "base.html" %}

{% block content %}
<div class="article-entry">

<h2>{{ object.title }}</h2>
<p>by {{ object.author }} | {{ object.date }}</p>
<p>{{ object.body }}</p>

</div>
<div>
<!-- new code here -->
{% if article.author.pk == request.user.pk %}
<p>Edit
Delete

</p>

198https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#if

https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#if
https://docs.djangoproject.com/en/5.0/ref/templates/builtins/#if

Chapter 14: Permissions and Authorization 279

{% endif %} <!-- new code here -->
<p>Back to All Articles.</p>

</div>
{% endblock content %}

To make sure that our new edit/delete logic works as intended, make sure you are logged in as

testuser and create a new article using the “+ New” button in the top navbar. If you refresh the

all articles webpage, only the article authored by testuser should have the edit and delete links

visible.

Edit/Delete Links Not Shown

Click on the article name to navigate to its detail page. The edit and delete links are visible.

Chapter 14: Permissions and Authorization 280

Edit/Delete Links Shown for testuser

However, if you navigate to the detail page of an article created by superuser, the links are gone.

Edit/Delete Links Not Shown

Git

A quick save with Git is in order as we finish this chapter.

Chapter 14: Permissions and Authorization 281

Shell

(.venv) $ git status
(.venv) $ git add -A
(.venv) $ git commit -m "permissions and authorizations"
(.venv) $ git push origin main

Conclusion

Our newspaper app is almost done.We could take further steps at this point, such as only display-

ing edit and delete links to the appropriate users, which would involve custom template tags199,

but overall, the app is in good shape. Our articles are correctly configured, set permissions and

authorizations, and have a working user authentication flow. The last item needed is the ability

for fellow logged-in users to leave comments, which we’ll cover in the next chapter.

199https://docs.djangoproject.com/en/5.0/howto/custom-template-tags/

https://docs.djangoproject.com/en/5.0/howto/custom-template-tags/
https://docs.djangoproject.com/en/5.0/howto/custom-template-tags/

Chapter 15: Comments

We could add comments to our Newspaper site in two ways. The first is to create a dedicated

comments app and link it to articles; however, that seems like over-engineering. Instead, we

can add a model called Comment to our articles app and link it to the Article model through a

foreign key. We will take the more straightforward approach since adding more complexity later

is always possible.

The whole Django structure of one project containing multiple smaller apps is designed to help

the developer reason about the website. The computer doesn’t care how the code is structured.

Breaking functionality into smaller pieces helps us–and future teammates–understand the logic

in aweb application. But you don’t need to optimize prematurely. If your eventual comments logic

becomes lengthy, then yes, by all means, spin it off into its own comments app. But the first thing

to do is make the code work, make sure it is performant, and structure it, so it’s understandable

to you or someone else months later.

What do we need to add comments functionality to our website? We already know it will involve

models, URLs, views, templates, and in this case, forms. We need all four for the final solution,

but the order in which we tackle them is largely up to us. Many Django developers find that going

in this order–models -> URLs -> views -> templates/forms–works best, so that is what we will

use here. By the end of this chapter, users will be able to add comments to any existing article

on our website.

Model

Let’s begin by adding another table to our existing database called Comment. This model will have

a many-to-one foreign key relationship to Article: one article can have many comments, but

not vice versa. Traditionally the name of the foreign key field is simply the model it links to, so

this field will be called article. The other two fields will be comment and author.

Chapter 15: Comments 283

Open up the file articles/models.py and underneath the existing code, add the following. Note

that we include __str__ and get_absolute_urlmethods as best practices.

Code

articles/models.py
...
class Comment(models.Model): # new

article = models.ForeignKey(Article, on_delete=models.CASCADE)
comment = models.CharField(max_length=140)
author = models.ForeignKey(

settings.AUTH_USER_MODEL,
on_delete=models.CASCADE,

)

def __str__(self):
return self.comment

def get_absolute_url(self):
return reverse("article_list")

Since we’ve updated our models, it’s time to make a new migration file and apply it. Note that

by adding articles at the end of the makemigrations command–which is optional–we are

specifying we want to use just the articles app here. This is a good habit because consider

what would happen if we changed models in two different apps? If we did not specify an app,

then both apps’ changes would be incorporated in the same migrations file, making it harder to

debug errors in the future. Keep each migration as small and contained as possible.

Shell

(.venv) $ python manage.py makemigrations articles
Migrations for 'articles':
articles/migrations/0002_comment.py
- Create model Comment

(.venv) $ python manage.py migrate
Operations to perform:
Apply all migrations: accounts, admin, articles, auth, contenttypes, sessions

Running migrations:
Applying articles.0002_comment... OK

Chapter 15: Comments 284

Admin

After making a new model, it’s a good idea to play around with it in the admin app before

displaying it on our website. Add Comment to our admin.py file so it will be visible.

Code

articles/admin.py
from django.contrib import admin
from .models import Article, Comment # new

class ArticleAdmin(admin.ModelAdmin):
list_display = [

"title",
"body",
"author",

]

admin.site.register(Article, ArticleAdmin)
admin.site.register(Comment) # new

Then start the server with python manage.py runserver and navigate to our main page

http://127.0.0.1:8000/admin/.

Chapter 15: Comments 285

Admin Homepage with Comments

Under the “Articles” app, you’ll see our two tables: Comments and Articles. Click on the “+ Add”

next to Comments. There are dropdowns for Article, Author, and a text field next to Comment.

Admin Comments

Select an article, write a comment, and then choose an author that is not your superuser, perhaps

testuser as I’ve done in the picture. Then click on the “Save” button.

Chapter 15: Comments 286

Admin testuser Comment

You should next see your comment on the admin “Comments” page.

Admin Comment One

At this point, we could add an additional admin field to see the comment and the article on this

page. But wouldn’t it be better to see all Comment models related to a single Article model? We

canwith a Django admin feature called inlines, which displays foreign key relationships in a visual

Chapter 15: Comments 287

way.

There are two main inline views used: TabularInline200 and StackedInline201. The only difference

between the two is the template for displaying information. In a TabularInline, all model fields

appear on one line; in a StackedInline, each field has its own line. We’ll implement both so you

can decide which one you prefer.

Update articles/admin.py in your text editor to add the StackedInline view.

Code

articles/admin.py
from django.contrib import admin
from .models import Article, Comment

class CommentInline(admin.StackedInline): # new
model = Comment

class ArticleAdmin(admin.ModelAdmin): # new
inlines = [

CommentInline,
]
list_display = [

"title",
"body",
"author",

]

admin.site.register(Article, ArticleAdmin) # new
admin.site.register(Comment)

Now go to the main admin page at http://127.0.0.1:8000/admin/ and click “Articles.” Select

the article you just commented on.

200https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.TabularInline
201https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.StackedInline

https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.TabularInline
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.StackedInline
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.TabularInline
https://docs.djangoproject.com/en/5.0/ref/contrib/admin/#django.contrib.admin.StackedInline

Chapter 15: Comments 288

Admin Change Page

Better, right? We can see and modify all our related articles and comments in one place. Note

that, by default, the Django admin will display three empty rows here. You can change the default

number that appears with the extra field. So if you wanted no extra fields by default, the code

would look like this:

Chapter 15: Comments 289

Code

articles/admin.py
...
class CommentInline(admin.StackedInline):

model = Comment
extra = 0 # new

Admin No Extra Comments

Personally, though, I prefer using TabularInline as it shows more information in less space:

the comment, author, and more on one single line. To switch to it, we only need to change our

CommentInline from admin.StackedInline to admin.TabularInline.

Chapter 15: Comments 290

Code

articles/admin.py
from django.contrib import admin
from .models import Article, Comment

class CommentInline(admin.TabularInline): # new
model = Comment
extra = 0 #

class ArticleAdmin(admin.ModelAdmin):
inlines = [

CommentInline,
]
list_display = [

"title",
"body",
"author",

]

admin.site.register(Article, ArticleAdmin)
admin.site.register(Comment)

Refresh the current admin page for Articles and you’ll see the new change: all fields for each

model are displayed on the same line.

Chapter 15: Comments 291

TabularInline page

Much better. Now we need to display the comments on our website by updating our template.

Template

We want comments to appear on the articles list page and allow logged-in users to add a com-

ment on the detail page for an article. Thatmeans updating the template files article_list.html

and article_detail.html.

Let’s start with article_list.html. If you look at the articles/models.py file again, it is clear

that Comment has a foreign key relationship to the article. To display all comments related to a

Chapter 15: Comments 292

specific article, we will follow the relationship backward202 via a “query,” which is a way to ask the

database for a specific bit of information. Django has a built-in syntax known as FOO_set where

FOO is the lowercase source model name. So for our Article model, we use the syntax {% for

comment in article.comment_set.all %} to view all related comments. And then, within this

for loop, we can specify what to display, such as the comment itself and author.

Here is the updated article_list.html file –the changes start after the "card-body" div class.

Code

<!-- templates/article_list.html -->
...
<div class="card-body">
{{ article.body }}
{% if article.author.pk == request.user.pk %}
Edit
Delete
{% endif %}

</div>
<div class="card-footer">
{% for comment in article.comment_set.all %}
<p>

{{ comment.author }} ·

{{ comment }}

</p>
{% endfor %}

</div>
</div>

{% endfor %}
{% endblock content %}

If you refresh the articles page at http://127.0.0.1:8000/articles/, we can see our new

comment on the page.

202https://docs.djangoproject.com/en/5.0/topics/db/queries/#following-relationships-backward

https://docs.djangoproject.com/en/5.0/topics/db/queries/#following-relationships-backward
https://docs.djangoproject.com/en/5.0/topics/db/queries/#following-relationships-backward

Chapter 15: Comments 293

Articles Page with Comments

Let’s also add comments to the detail page for each article. We’ll use the same technique of

following the relationship backward to access comments as a foreign key of the article model.

Code

<!-- templates/article_detail.html -->
{% extends "base.html" %}

{% block content %}
<div class="article-entry">

<h2>{{ object.title }}</h2>
<p>by {{ object.author }} | {{ object.date }}</p>
<p>{{ object.body }}</p>

</div>

<!-- Changes start here! -->
<hr>
<h4>Comments</h4>
{% for comment in article.comment_set.all %}
<p>{{ comment.author }} · {{ comment }}</p>
{% endfor %}
<hr>
<!-- Changes end here! -->

Chapter 15: Comments 294

{% if article.author.pk == request.user.pk %}
<p>Edit
Delete

</p>
{% endif %}
<p>Back to All Articles.</p>
{% endblock content %}

Navigate to the detail page of your article with a comment, and any comments will be visible.

Article Details Page with Comments

We won’t win any design awards for this layout, but this is a book on Django, so our goal is to

output the correct content.

Comment Form

The comments are now visible, but we need to add a form so users can add them to the website.

Web forms are a very complicated topic since security is essential: any time you accept data from

a user that will be stored in a database, you must be highly cautious. The good news is Django

forms handle most of this work for us.

Chapter 15: Comments 295

ModelForm203 is a helper class that translates database models into forms. We can use it to

create a form called, appropriately enough, CommentForm. We could put this form in our existing

articles/models.py file, but generally, the best practice is to put all forms in a dedicated

forms.py file within your app. That’s the approach we’ll use here.

With your text editor, create a new file called articles/forms.py. At the top, import forms, which

has ModelForm as a module. Then import our model, Comment, since we’ll need to add that, too.

Finally, create the class CommentForm, specifying both the underlying model and the specific field

to expose, comment. Whenwe create the corresponding view, wewill automatically set the author

to the currently logged-in user.

Code

articles/forms.py
from django import forms

from .models import Comment

class CommentForm(forms.ModelForm):
class Meta:

model = Comment
fields = ("comment",)

Web forms can be incredibly complex, but Django has thankfully abstracted away much of the

complexity for us.

Comment View

Currently, we rely on the generic class-based DetailView to power our ArticleDetailView. It

displays individual entries but needs to be configured to add additional information like a form.

Class-based views are powerful because their inheritance structuremeans that if we knowwhere

to look, there is often a specific module we can override to attain our desired outcome.

The one we want in this case is called get_context_data()204. It is used to add information to a

203https://docs.djangoproject.com/en/5.0/topics/forms/modelforms/#modelform
204https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-simple/#django.views.generic.base.

ContextMixin.get_context_data

https://docs.djangoproject.com/en/5.0/topics/forms/modelforms/#modelform
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-simple/#django.views.generic.base.ContextMixin.get_context_data
https://docs.djangoproject.com/en/5.0/topics/forms/modelforms/#modelform
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-simple/#django.views.generic.base.ContextMixin.get_context_data
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-simple/#django.views.generic.base.ContextMixin.get_context_data

Chapter 15: Comments 296

template by updating the context205, a dictionary object containing all the variable names and

values available in our template. For performance reasons, Django templates compile only once;

if we want something available in the template, it must load into the context at the beginning.

What dowewant to add in this case?Well, just our CommentForm. And since context is a dictionary,

we must also assign a variable name. How about form? Here is what the new code looks like in

articles/views.py.

Code

articles/views.py
...
from .models import Article
from .forms import CommentForm # new

class ArticleDetailView(LoginRequiredMixin, DetailView):
model = Article
template_name = "article_detail.html"

def get_context_data(self, **kwargs): # new
context = super().get_context_data(**kwargs)
context["form"] = CommentForm()
return context

Near the top of the file, just above from .models import Article, we added an import line for

CommentForm and then updated the module for get_context_data(). First, we pulled all existing

information into the context using super(), added the variable name form with the value of

CommmentForm(), and returned the updated context.

Comment Template

To display the form in our article_detail.html template file, we’ll rely on the form variable and

crispy forms. This pattern is the same as what we’ve done before in our other forms. At the top,

load crispy_form_tags, create a standard-looking post form that uses a csrf_token for security,

and display our form fields via {{ form|crispy }}.

205https://docs.djangoproject.com/en/5.0/ref/templates/api/#django.template.Context

https://docs.djangoproject.com/en/5.0/ref/templates/api/#django.template.Context
https://docs.djangoproject.com/en/5.0/ref/templates/api/#django.template.Context

Chapter 15: Comments 297

Code

<!-- templates/article_detail.html -->
{% extends "base.html" %}
{% load crispy_forms_tags %} <!-- new! -->

{% block content %}
<div class="article-entry">

<h2>{{ object.title }}</h2>
<p>by {{ object.author }} | {{ object.date }}</p>
<p>{{ object.body }}</p>

</div>

<hr>
<h4>Comments</h4>
{% for comment in article.comment_set.all %}
<p>{{ comment.author }} · {{ comment }}</p>

{% endfor %}
<hr>

<!-- Changes start here! -->
<h4>Add a comment</h4>
<form action="" method="post">{% csrf_token %}

{{ form|crispy }}
<button class="btn btn-success ms-2" type="submit">Save</button>

</form>
<!-- Changes end here! -->

<div>
{% if article.author.pk == request.user.pk %}
<p>Edit
Delete

</p>
{% endif %}
<p>Back to All Articles.</p>

</div>
{% endblock content %}

If you refresh the detail page, the form is now displayed with familiar Bootstrap and crispy forms

styling.

Chapter 15: Comments 298

Form Displayed

Success! However, we are only half done. If you attempt to submit the form, you’ll receive an

error because our view doesn’t yet support any POSTmethods!

Comment Post View

We ultimately need a view that handles both GET and POST requests depending upon whether the

form should bemerely displayed or capable of being submitted.We could reach for FormMixin206

to combine both into our ArticleDetailView, but as the Django docs illustrate quite well207,

there are risks with this approach.

To avoid subtle interactions between DetailView and FormMixin, we will separate the GET and

POST variations into their dedicated views. We can then transform ArticleDetailView into a

wrapper view that combines them. This is a very common pattern in more advanced Django

206https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-editing/#django.views.generic.edit.

FormMixin
207https://docs.djangoproject.com/en/5.0/topics/class-based-views/mixins/#avoid-anything-more-complex

https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-editing/#django.views.generic.edit.FormMixin
https://docs.djangoproject.com/en/5.0/topics/class-based-views/mixins/#avoid-anything-more-complex
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-editing/#django.views.generic.edit.FormMixin
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-editing/#django.views.generic.edit.FormMixin
https://docs.djangoproject.com/en/5.0/topics/class-based-views/mixins/#avoid-anything-more-complex

Chapter 15: Comments 299

development because a single URL must often behave differently based on the user request (GET,

POST, etc.) or even the format (returning HTML vs. JSON).

Let’s start by renaming ArticleDetailView into CommentGet since it handles GET requests but

not POST requests. We’ll then create a new CommentPost view that is empty for now. And we

can combine both CommentPost and CommentGet into a new ArticleDetailView that subclasses

View208, the foundational class upon which all other class-based views are built.

Code

articles/views.py
from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin
from django.views import View # new
from django.views.generic import ListView, DetailView
...

class CommentGet(DetailView): # new
model = Article
template_name = "article_detail.html"

def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
context["form"] = CommentForm()
return context

class CommentPost(): # new
pass

class ArticleDetailView(LoginRequiredMixin, View): # new
def get(self, request, *args, **kwargs):

view = CommentGet.as_view()
return view(request, *args, **kwargs)

def post(self, request, *args, **kwargs):
view = CommentPost.as_view()
return view(request, *args, **kwargs)

...

208https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.View

https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.View
https://docs.djangoproject.com/en/5.0/ref/class-based-views/base/#django.views.generic.base.View

Chapter 15: Comments 300

Navigate back to the homepage in your web browser and then reload the article page with a

comment. Everything should work as before.

We’re ready to write CommentPost and complete the task of adding comments to our website. We

are almost done!

FormView209 is a built-in view that displays a form, any validation errors, and redirects to a

new URL. We will use it with SingleObjectMixin210 to associate the current article with our

form; in other words, if you have a comment at articles/4/, as I do in the screenshots, then

SingleObjectMixin will grab the 4 so that our comment is saved to the article with a pk of 4.

Here is the complete code, which we’ll run through below line-by-line.

Code

articles/views.py
from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin
from django.views import View
from django.views.generic import ListView, DetailView, FormView # new
from django.views.generic.detail import SingleObjectMixin # new
from django.views.generic.edit import UpdateView, DeleteView, CreateView
from django.urls import reverse_lazy, reverse # new

from .forms import CommentForm
from .models import Article

...
class CommentPost(SingleObjectMixin, FormView): # new

model = Article
form_class = CommentForm
template_name = "article_detail.html"

def post(self, request, *args, **kwargs):
self.object = self.get_object()
return super().post(request, *args, **kwargs)

def form_valid(self, form):
comment = form.save(commit=False)
comment.article = self.object

209https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#django.views.generic.edit.

FormView
210https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-single-object/#django.views.generic.

detail.SingleObjectMixin

https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#django.views.generic.edit.FormView
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-single-object/#django.views.generic.detail.SingleObjectMixin
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#django.views.generic.edit.FormView
https://docs.djangoproject.com/en/5.0/ref/class-based-views/generic-editing/#django.views.generic.edit.FormView
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-single-object/#django.views.generic.detail.SingleObjectMixin
https://docs.djangoproject.com/en/5.0/ref/class-based-views/mixins-single-object/#django.views.generic.detail.SingleObjectMixin

Chapter 15: Comments 301

comment.author = self.request.user
comment.save()
return super().form_valid(form)

def get_success_url(self):
article = self.object
return reverse("article_detail", kwargs={"pk": article.pk})

...

At the top, import FormView, SingleObjectMixin, and reverse. FormView relies on form_class

to set the form name we’re using, CommentForm. First up is post(): we use get_object() from

SingleObjectMixin to grab the article pk from the URL. Next is form_valid(), which is called

when form validation has succeeded. Before we save our comment to the database, we must

specify the article it belongs to. Initially, we save the form but set commit to False because we

associate the correct article with the form object in the next line. We also set the author field in

our Commentmodel to the current user. In the following line, we save the form. Finally, we return

it as part of form_valid(). The final module, get_success_url(), is called after the form data is

saved; we redirect the user to the current page.

And we’re done! Go ahead and load your articles page now, refresh the page, then try to submit

a second comment.

Chapter 15: Comments 302

Submit Comment in Form

It should automatically reload the page with the new comment displayed like this:

Chapter 15: Comments 303

Comment Displayed

New Comment Link

Although you can add a comment to an article from its detail page, it is far more likely that a

reader will want to comment on something from the all articles page. They can do that if they

know to click on the detail link but that is not very good user design. Let’s add a “New Comment”

link to each article listed; it will navigate to the detail page but allow for that functionality. Do so

by adding one line to the card-body section outside the if/endif loop.

Chapter 15: Comments 304

Code

<!-- templates/article_list.html -->
...
<div class="card-body">

<p>{{ article.body }}</p>
{% if article.author.pk == request.user.pk %}

Edit
Delete

{% endif %}
New Comment <!-- new -->

</div>

Refresh the all articles webpage to see the change and then click the “New Comment” link to

confirm it works as expected.

New Comment on All Articles Page

Chapter 15: Comments 305

Git

Weadded quite a lot of code in this chapter. Let’smake sure to save ourwork before the upcoming

final chapter.

Shell

(.venv) $ git status
(.venv) $ git add -A
(.venv) $ git commit -m "comments app"
(.venv) $ git push origin main

Conclusion

OurNewspaper app is now complete. It has a robust user authentication flow that uses a custom

user model, articles, comments, and improved styling with Bootstrap. We even dipped our toes

into permissions and authorizations.

The remaining task is to deploy it online. In the next chapter, we’ll see how to properly deploy a

Django site using environment variables, PostgreSQL, and additional settings.

Chapter 16: Deployment

There is a fundamental tension between the ease of use desired in a local Django development

environment and the security and performance necessary in production. Django is designed to

make web developers’ lives easier, and therefore, it defaults to a local configuration when the

startproject command is first run. We’ve seen this in the use of SQLite as the local file-based

database, the built-in runserver command that launches a local web server in your web browser,

and various default configurations in the settings.py file, including DEBUG set to True and an

auto-generated SECRET_KEY.

In production, things are different. All the configurations optimized for ease of use in the

development environment need to focus instead on security, performance, and scalability.

Deploying a Django website to production requires several steps—so many, in fact, that the

Django docs even have a deployment checklist211. It is a very helpful tool, but unfortunately,

it is not sufficient. Additional factors include various hosting options, environment variables,

database configurations, handling static files, and more.

In this chapter, we will create a deployment checklist and deploy the Newspaper project using

Heroku. The techniques coveredwill apply to almost any Djangowebsite that needs to be readied

for production, regardless of the hosting platform.

Hosting Options

If you ask five Django developers for the best hosting option, you’ll likely receive five different

answers. Everyone has a different preference based on their own experience and project needs.

Ultimately, though, we can divide hosting options into three main categories:

• 1. Dedicated Server: a physical server sitting in a data center that belongs exclusively to

211https://docs.djangoproject.com/en/5.0/howto/deployment/checklist/

https://docs.djangoproject.com/en/5.0/howto/deployment/checklist/
https://docs.djangoproject.com/en/5.0/howto/deployment/checklist/

Chapter 16: Deployment 307

you. Generally, only the largest companies adopt this approach since it requires a lot of

technical expertise to configure and maintain.

• 2. Virtual Private Server (VPS): a server can be divided into multiple virtual machines

that use the same hardware, which is much more affordable than a dedicated server. This

approach also means you don’t have to worry about maintaining the hardware.

• 3. Platform as a Service (PaaS): a managed VPS solution that is pre-configured and

maintained, making it the fastest option to deploy and scale a website. It typically comes

with a managed database, as well. The downside is that a developer cannot access the

same degree of customization that a VPS or a dedicated server provides. At scale, PaaS can

become quite expensive.

The choices here are all about tradeoffs. Many Django developers and small companies are happy

using a PaaS to essentially abstract away many of the difficulties inherent in putting code into

production. Popular PaaS options includeHeroku, Fly, and Render, amongmany others. For a VPS,

Digital Ocean has the cleanest interface for a solo developer or small team, but for enterprise

applications, the choice is typically between AWS, Google, or Microsoft.

For our Newspaper website, we will use a PaaS, specifically Heroku, because it is mature, widely

used, and has a relatively straightforward deployment process. However, with the exception of

creating a Heroku-specific Procfile file at the end, the steps outlined in this chapter will work

with any PaaS provider.

Web Servers and WSGI/ASGI Servers

The local server provided by Django and run via runserver handles multiple jobs that must

be handled differently in production. First, it acts as a web server, software that sits in front

of our Django application to process HTTP requests and responses. It also manages static file

requests. Before Platforms-as-a-Service became available, it was up to the web developer to

install, configure, and maintain a dedicated web server like Nginx212 or Apache213: no small task

and requiring a completely different skill set than web development. Fortunately, a Platform-as-

212https://nginx.org/en/
213https://httpd.apache.org/

https://nginx.org/en/
https://httpd.apache.org/
https://nginx.org/en/
https://httpd.apache.org/

Chapter 16: Deployment 308

a-Service knows we are deploying a website and automatically bundles a web server, generally

Nginx, so we don’t have to install or manage it ourselves.

The other role that runserver has provided us is acting as an application server to help Django

generate dynamic content. When a request comes in, runserver powers that request through

URLs, views,models, the database, and templates and then generates anHTTP response. In other

words, runserver also acts as an application server, not just a web server.

Application servers are colloquially referred to as “WSGI servers” because they use WSGI to

connect Python web apps to a server. In the early days of web development, web frameworks

didn’t implicitly work well with various web servers without a lot of customization. For Python

web frameworks, this led to the creation of the Web Server Gateway Interface (WSGI) in 2003.

WSGI is not a server or framework but a set of rules that standardizes how web servers should

connect to any Python web app. By abstracting away this headache, it opened the door to newer

Python web frameworks–like Django, which was first released in 2005–that could work on any

web server and did not have to worry about this step in the process. Common examples of

production WSGI servers include Gunicorn, uWSGI, and Daphne.

Traditionally, Python was a synchronous programming language: code executed sequentially,

meaning each piece of code had to be completed before another piece of code could begin.

As a result, complex tasks might take a while. Starting in 2012 with Python 3.3, asynchronous

programming was added to Python via the asyncio214 module. While synchronous processing is

done sequentially in a specific order, asynchronous processing occurs in parallel. Tasks that are

not dependent on others can be offloaded and executed at the same time as the main operation,

and the result can then be reported back when complete.

Django has been gradually adding asynchronous support215 since version 3.0 in 2019. One layer

is the introduction of the Asynchronous Server Gateway Interface (ASGI), which, as the name

suggests, standardizes how servers should connect to Python web apps that support both

synchronous and asynchronous communication. ASGI is intended to be the eventual successor

to WSGI.

ASGI and WSGI are both included in new Django projects now. When you run the startproject

command, Django generates a wsgi.py file and an asgi.py file in the project-level directory,

214https://docs.python.org/3/library/asyncio.html
215https://docs.djangoproject.com/en/5.0/topics/async/

https://docs.python.org/3/library/asyncio.html
https://docs.djangoproject.com/en/5.0/topics/async/
https://docs.python.org/3/library/asyncio.html
https://docs.djangoproject.com/en/5.0/topics/async/

Chapter 16: Deployment 309

django_project.

Full async support for the entire Django stack is still in the works but comes ever closer with

each new major release. Given that this book is for beginners, it is important to recognize

asynchronous developments rather than dwell on them.While they are exciting from a technical

perspective, they are also challenging to reason about and are most relevant for websites

that need “real-time” functionality, such as live notifications, chat applications, real-time data

updates, and interactive dashboards.

Deployment Checklist

It can be overwhelming to see a complete deployment checklist right at the beginning, but it is

a helpful guide for this chapter. Here, then, is the deployment checklist we will cover:

• configure static files and install WhiteNoise

• add environment variables with environs

• create a .env file and update the .gitignore file

• update DEBUG, ALLOWED_HOSTS, SECRET_KEY, and CSRF_TRUSTED_ORIGINS

• update DATABASES to run PostgreSQL in production and install psycopg

• install Gunicorn as a production WSGI server

• create a Procfile

• update the requirements.txt file

• create a new Heroku project, push the code to it, and start a dyno web process

We could toggle many more production settings, but this list covers the most critical security

and performance concerns.

Static Files

Static files are the images, JavaScript, and CSS used by a website. We worked with them in

Chapter 6 on the Blog project, where we added custom CSS. For local usage, as long as DEBUG

is set to True in settings.py, the files are served automatically by the runserver command.

Chapter 16: Deployment 310

Django automatically looks for static files within each app in a folder called “static,” but a common

technique is to place all static files in a project-level folder called “static” instead. We’ll do that

here. Quit the local server with Control+c and create a new static directory in the same folder

as the manage.py file. Add new folders within it for css, js, and img on the command line.

Shell

(.venv) $ mkdir static
(.venv) $ mkdir static/css
(.venv) $ mkdir static/js
(.venv) $ mkdir static/img

A quirk of Git is that it will not track empty folders. If no files are within a folder, Git ignores it

by default. One solution–which we will adopt here–is to add a .keep file to the three subfolders

with your text editor:

• static/css/.keep

• static/js/.keep

• static/img/.keep

For local usage, only two settings are required for static files: STATIC_URL, which is the base URL

for serving static files, and STATICFILES_DIRS, which defines the additional locations the built-in

staticfiles app will traverse looking for static files beyond an app/static folder.

Code

django_project/settings.py
STATIC_URL = "static/"
STATICFILES_DIRS = [BASE_DIR / "static"] # new

Our local Django server is not designed to host static files in production. A best practice is to

bundle all the static files into a single directory and then have the production web server, not

the Django server, serve them. Django has a management command, collectstatic, for just

this purpose: it copies all static files into a single location for deployment. The one configuration

required of us is setting STATIC_ROOT to define the location of compiled static files. By convention,

we will create a new project-level directory called staticfiles.

Chapter 16: Deployment 311

Code

django_project/settings.py
STATIC_URL = "static/"
STATICFILES_DIRS = [BASE_DIR / "static"]
STATIC_ROOT = BASE_DIR / "staticfiles" # new

Now run the command python manage.py collectstatic to compile all static files into the

staticfiles folder.

Shell

(.venv) $ python manage.py collectstatic

The only static files right now are contained within the built-in admin app, so a new staticfiles

directory should appear with sections for the admin. When additional static files are added in

the future, they will also be compiled in this directory.

Code

staticfiles/
└── admin

├── css
├── img
├── js

We need to use the {% load static %} template tag to display static files in the templates. Add

it now to the top of the base.html file.

Code

<!-- templates/base.html -->
{% load static %}
<!DOCTYPE html>
...

If we were deploying with a dedicated server or VPS, it would be up to us to write code for the

web server, likely Nginx or Apache, to serve static files. But since we are using the PaaS Heroku,

we can leverage the popular WhiteNoise216 third-party package optimized to serve static files

216http://whitenoise.evans.io/en/stable/

http://whitenoise.evans.io/en/stable/
http://whitenoise.evans.io/en/stable/

Chapter 16: Deployment 312

from Django. It allows additional compression and immutable file storage and sets appropriate

HTTP caching headers. In short, it makes our deployment process much more straightforward.

Install the latest version of WhiteNoise using pip.

Shell

(.venv) $ python -m pip install whitenoise==6.7.0

Then, in the django_project/settings.py file, make three changes:

• add whitenoise to the INSTALLED_APPS above the built-in staticfiles app

• under MIDDLEWARE, add a new WhiteNoiseMiddleware on the third line

• change STORAGES to use WhiteNoise.

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"whitenoise.runserver_nostatic", # new
"django.contrib.staticfiles",
3rd Party
"crispy_forms",
"crispy_bootstrap5",
Local
"accounts",
"pages",
"articles",

]

MIDDLEWARE = [
"django.middleware.security.SecurityMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",
"whitenoise.middleware.WhiteNoiseMiddleware", # new
"django.middleware.common.CommonMiddleware",
"django.middleware.csrf.CsrfViewMiddleware",
"django.contrib.auth.middleware.AuthenticationMiddleware",

Chapter 16: Deployment 313

"django.contrib.messages.middleware.MessageMiddleware",
"django.middleware.clickjacking.XFrameOptionsMiddleware",

]

...
STATIC_URL = "static/"
STATICFILES_DIRS = [BASE_DIR / "static"]
STATIC_ROOT = BASE_DIR / "staticfiles"
STORAGES = {

"default": {
"BACKEND": "django.core.files.storage.FileSystemStorage",

},
"staticfiles": {

"BACKEND": "whitenoise.storage.CompressedManifestStaticFilesStorage", # new
},

}

STORAGES217 is a new setting in Django 4.2+ that defines how files are stored. It is implicitly set

in settings.py but we are changing the staticfiles section to use WhiteNoise compression.

Run the collectstatic command again. The prompt will warn about overwriting existing files,

but that is intentional: we want to compile them using WhiteNoise now. Type yes and press

Return to continue:

Shell

(.venv) $ python manage.py collectstatic

That’s it! We have configured our static files to be compiled in one place for production, added

the static template tag to our base.html template, and installed WhiteNoise to efficiently serve

them.

Middleware

Adding WhiteNoise is the first time we’ve updated the Django middleware218, a framework

of hooks into Django’s request/response processing. It is a way to add functionality such as

217https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-STORAGES
218https://docs.djangoproject.com/en/5.0/topics/http/middleware/

https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-STORAGES
https://docs.djangoproject.com/en/5.0/topics/http/middleware/
https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-STORAGES
https://docs.djangoproject.com/en/5.0/topics/http/middleware/

Chapter 16: Deployment 314

authentication, security, sessions, and more. During the HTTP request phase, middleware is

applied in the order it is defined in MIDDLEWARE top-down. That means SecurityMiddleware

comes first, then SessionMiddleware, and so on.

Code

django_project/settings.py
MIDDLEWARE = [

"django.middleware.security.SecurityMiddleware", |
"django.contrib.sessions.middleware.SessionMiddleware", |
"whitenoise.middleware.WhiteNoiseMiddleware", # new |
"django.middleware.common.CommonMiddleware", |
"django.middleware.csrf.CsrfViewMiddleware", |
"django.contrib.auth.middleware.AuthenticationMiddleware", |
"django.contrib.messages.middleware.MessageMiddleware", |
"django.middleware.clickjacking.XFrameOptionsMiddleware", v

]

During the HTTP response phase, after the view is called, middleware are applied in reverse

order, from the bottom up, starting with XFrameOptionsMiddleware, then MessageMiddleware,

and so on. The traditional way of describing middleware is like an onion, where eachmiddleware

class is a “layer” that wraps the view.

Truly diving into middleware is an advanced topic beyond the scope of this book. It is important,

however, to be conceptually aware of how all the pieces in the Django architecture fit together.

Environment Variables

Real-worldDjango projects require at least two environments (local and production) but typically

havemore ifmultiple testing servers are involved. There are twoways to toggle betweendifferent

environments in the same project: environment variables and multiple settings files. These

days, the most popular approach is to use environment variables, which we will do here. An

environment variable is a variable whose value is set outside the current program and can be

loaded in at runtime.We can store these variables securely and load them into our Django project

as needed.

There are multiple ways to work with environment variables, but for this project, we will use

Chapter 16: Deployment 315

environs219, a popular third-party package that comes with additional Django-specific features.

Use pip to add environs and include the double quotes, "", to install the helpful Django

extension.

Shell

(.venv) $ python -m pip install "environs[django]"==11.0.0

Then, add three new lines to the top of the django_project/settings.py file.

Code

django_project/settings.py
from pathlib import Path
from environs import Env # new

env = Env() # new
env.read_env() # new

Next, create a new file, .env, in the root project directory, containing our environment variables.

We already know that any file or directory starting with a period will be treated as a hidden file

and not displayed by default during a directory listing. The file still exists, though, and needs to

be added to the .gitignore file to avoid being added to our Git source control.

.gitignore

.venv/
__pycache__/
db.sqlite3
.env # new!

DEBUG and ALLOWED_HOSTS

The first setting we will configure with environment variables is DEBUG. By default, DEBUG is

set to True, which is helpful for local development but a major security issue if deployed into

production. For example, if you start up the local server with python manage.py runserver

219https://github.com/sloria/environs

https://github.com/sloria/environs
https://github.com/sloria/environs

Chapter 16: Deployment 316

and navigate to a page that does not exist, like http://127.0.0.1:8000/debug, you will see the

following:

Debug Page

This page lists all the URLs tried and apps loaded, a treasure map for any hacker attempting to

break into your site. You’ll even see that at the bottom of the error page, it says that Django will

display a standard 404 page if DEBUG=False. That’s what we want! The first step is to change

DEBUG to False in the settings.py file.

Code

django_project/settings.py
DEBUG = False

Refresh theweb page http://127.0.0.1:8000/debug, and you’ll see an error: the site doesn’t load

at all. On the command line, Django has provided us with the explanation via CommandError220,

which is raised for serious problems.

220https://docs.djangoproject.com/en/5.0/howto/custom-management-commands/#django.core.management.

CommandError

https://docs.djangoproject.com/en/5.0/howto/custom-management-commands/#django.core.management.CommandError
https://docs.djangoproject.com/en/5.0/howto/custom-management-commands/#django.core.management.CommandError
https://docs.djangoproject.com/en/5.0/howto/custom-management-commands/#django.core.management.CommandError

Chapter 16: Deployment 317

Shell

(.venv) $ python manage.py runserver
...
CommandError: You must set settings.ALLOWED_HOSTS if DEBUG is False.

In this case, Django is telling us that we can’t set DEBUG to False if we have not set ALLOWED_HOSTS.

So what is ALLOWED_HOSTS221? It is a list of strings representing host/domain names that our

Django site can serve. By default, ALLOWED_HOSTS is set to accept all hosts, which is not secure!

We must update it to accept local ports (localhost and 127.0.0.1) and .herokuapp.com for our

Heroku deployment. We can add all three routes to our config.

Code

django_project/settings.py
ALLOWED_HOSTS = [".herokuapp.com", "localhost", "127.0.0.1"] # new

Now that we’ve set ALLOWED_HOSTS try the runserver command again.

Not Found Page

This is the generic Django 404 page that we want displayed in production. It does not give away

any information to a potential hacker.

Manually setting configurations for development and production environments is not ideal. For

one thing, it is a major pain and easy to make a mistake. For another, it is insecure if we put

production information that should be secret into settings.py and perform a Git commit by

mistake.

This is where environment variables come to the rescue. To add any environment variable to our

project, we first add it to the .env file and then update django_project/settings.py.

Within the .env file, create a new environment variable called DEBUG and set its value to True.
221https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-ALLOWED_HOSTS

https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-ALLOWED_HOSTS
https://docs.djangoproject.com/en/5.0/ref/settings/#std-setting-ALLOWED_HOSTS

Chapter 16: Deployment 318

Code

.env
DEBUG=True

Then in django_project/settings.py, change the DEBUG setting to read the variable "DEBUG"

from the .env file.

Code

django_project/settings.py
DEBUG = env.bool("DEBUG", default=False)

The syntax of env.bool says to load an environment variable from the .env file that is a Boolean,

meaning true or false, with the name “DEBUG.” If an environment variable can’t be found, then

the default value, set here to False, will be used. It is a best practice to default to production

settings since they are more secure, and if something goes wrong in our code, we won’t default

to exposing all our secrets.

SECRET_KEY, and CSRF_TRUSTED_ORIGINS

SECRET_KEY, a random 50-character string generated each time startproject is run. This string

provides cryptographic protection throughout our Django project. In the settings file, you’ll see

the current value that begins with django-insecure. Here is the django_project/settings.py

value of the SECRET_KEY in my project. Yours will be different.

Code

django_project/settings.py
SECRET_KEY = "django-insecure-3$k(g9eheqqbzr@#&tt)r6%ab-g1=!j@2c^y7*sl6+ltzys05!"

And here it is, without the double quotes, in the .env file

Chapter 16: Deployment 319

.env

DEBUG=True
SECRET_KEY=django-insecure-3$k(g9eheqqbzr@#&tt)r6%ab-g1=!j@2c^y7*sl6+ltzys05! # new

Update django_project/settings.py so that SECRET_KEY points to this new environment vari-

able. It is a string so the syntax is env.str.

Code

django_project/settings.py
SECRET_KEY = env.str("SECRET_KEY")

The SECRET_KEY is out of the settings file and safe now, right? Actually no! Because we made

previous Git commits that included the value, it is stored in our Git history no matter what we

do. The solution is to create a new SECRET_KEY and add it to the .env file. One way to generate

a new one is by invoking Python’s built-in secrets222 module by running python -c 'import

secrets; print(secrets.token_urlsafe()) on the command line.

Copy and paste this new value into the .env file.

.env

DEBUG=True
SECRET_KEY=imDnfLXy-8Y-YozfJmP2Rw_81YA_qx1XKl5FeY0mXyY

Now restart the local server with python manage.py runserver and refresh your website. It will

work with the new SECRET_KEY loaded from the .env file but not tracked by Git since .env is in

the .gitignore file.

Our Newspaper project requires that we log into the admin on the production website to

create, read, update, or delete posts. That means CSRF_TRUSTED_ORIGINS223 must be cor-

rectly configured since it is a list of trusted origins for unsafe HTTP requests like POST. Add

it to the bottom of the settings.py file and set it to match a production URL on Heroku,

https://*.herokuapp.com. We will update both ALLOWED_HOSTS and CSRF_TRUSTED_ORIGINS to

match our production URL at the end of the chapter.

222https://docs.python.org/3/library/secrets.html
223https://docs.djangoproject.com/en/5.0/ref/settings/#csrf-trusted-origins

https://docs.python.org/3/library/secrets.html
https://docs.djangoproject.com/en/5.0/ref/settings/#csrf-trusted-origins
https://docs.python.org/3/library/secrets.html
https://docs.djangoproject.com/en/5.0/ref/settings/#csrf-trusted-origins

Chapter 16: Deployment 320

Code

django_project/settings.py
CSRF_TRUSTED_ORIGINS = ["https://*.herokuapp.com"] # new

DATABASES

We want to use SQLite locally but PostgreSQL in production. Currently, our settings file for

DATABASES lists only SQLite. The ENGINE specifies what type of database to use, and the NAME

points to its location.

Code

django_project/settings.py
DATABASES = {

"default": {
"ENGINE": "django.db.backends.sqlite3",
"NAME": BASE_DIR / "db.sqlite3",

}
}

Most PaaS will automatically set a DATABASE_URL environment variable inspired by the Twelve-

Factor App224 approach that contains all the parameters needed to connect to a database in the

format. In raw form, for PostgreSQL, it looks something like this:

Code

postgres://USER:PASSWORD@HOST:PORT/NAME

In other words, use postgres and here are custom values for USER, PASSWORD, HOST, PORT/NAME.

While we couldmanage this manually ourselves, this pattern is so well established in the Django

community that a dedicated third-party package, dj-database-url225, exists tomanage this for us.

Conveniently, dj-database-url is already installed since it is one of the helper packages added

by environs[django].

224https://12factor.net/
225https://github.com/jazzband/dj-database-url

https://12factor.net/
https://12factor.net/
https://github.com/jazzband/dj-database-url
https://12factor.net/
https://github.com/jazzband/dj-database-url

Chapter 16: Deployment 321

This means we can solve all these problems with a single line of code. Here is the brief update

to make to django_project/settings.py so that our project will try to access a DATABASE_URL

environment variable.

Code

django_project/settings.py
DATABASES = {"default": env.dj_db_url("DATABASE_URL")}

We will also set a DATABASE_URL environment variable in the .env file for local development.

.env

DEBUG=True
SECRET_KEY=imDnfLXy-8Y-YozfJmP2Rw_81YA_qx1XKl5FeY0mXyY
DATABASE_URL=sqlite:///db.sqlite3

Let’s reviewwhat’s happening here because it is can be confusing initially. For local development,

our project will try to find a .env file with environment variables. It will use them if it finds them,

which is why they are the local defaults.

In production, we have included the .env file in our .gitignore file so Heroku won’t know

about them unless we set the environment variablesmanually. Herokuwill automatically create a

DATABASE_URL environment variable with the configuration for our production database, so that

will be used.

We also need to install Psycopg226, a database adapter that lets Python apps like ours talk to

PostgreSQL databases. You can install it with pip on Windows, but if you are on macOS, you

must install PostgreSQL first via Homebrew227.

226https://www.psycopg.org/docs/
227https://brew.sh/

https://www.psycopg.org/docs/
https://brew.sh/
https://www.psycopg.org/docs/
https://brew.sh/

Chapter 16: Deployment 322

Shell

Windows
(.venv) $ python -m pip install "psycopg[binary]"==3.2.1

macOS
(.venv) $ brew install postgresql
(.venv) $ python3 -m pip install "psycopg[binary]"==3.2.1

We are using the binary version228 because it is the quickest way to start working with Psycopg.

Gunicorn and Procfile

Since Django’s default development server, runserver, is explicitly not designed for production,

we must select a production-ready WSGI server to use. Gunicorn229 is one of the most popular

and easiest-to-configure options. It can handle multiple requests simultaneously while being

scalable, stable, reliable, and compatible with production web servers.

Install Gunicorn with pip. Since we are using a PaaS, no additional configuration steps are

required.

Shell

(.venv) $ python -m pip install gunicorn==22.0.0

Heroku relies on a proprietary Procfile file that provides instructions on running applications

in their stack. In your text editor, create a new file called Procfile in the base directory. We

only need a single line of configuration for our project, telling Heroku to use Gunicorn as the

WSGI server, the location of the WSGI config file at django_project.wsgi, and finally, the flag

--log-file -makes any logging messages visible to us.

228https://www.psycopg.org/psycopg3/docs/basic/install.html#binary-installation
229http://gunicorn.org/

https://www.psycopg.org/psycopg3/docs/basic/install.html#binary-installation
http://gunicorn.org/
https://www.psycopg.org/psycopg3/docs/basic/install.html#binary-installation
http://gunicorn.org/

Chapter 16: Deployment 323

Procfile

web: gunicorn django_project.wsgi --log-file -

requirements.txt

We’re almost at the end of implementing the deployment checklist. The last step before deploying

to Heroku is to update the requirements.txt file. After all, for deployment we have installed the

following new packages: whitenoise, environs, psycopg, and gunicorn.

Use the command pip freeze and the > operator to output our virtual environment information

into a requirements.txt file.

Shell

(.venv) $ pip freeze > requirements.txt

The requirements.txt file will appear in the root directory containing all our installed packages

and their dependencies. My list as of the writing of this book looks as follows:

Code

requirements.txt
asgiref==3.8.1
black==24.4.2
click==8.1.7
crispy-bootstrap5==2024.2
dj-database-url==2.2.0
dj-email-url==1.0.6
Django==5.0.6
django-cache-url==3.4.5
django-crispy-forms==2.2
environs==11.0.0
gunicorn==22.0.0
marshmallow==3.21.3
mypy-extensions==1.0.0
packaging==24.1
pathspec==0.12.1
platformdirs==4.2.2
psycopg==3.2.1

Chapter 16: Deployment 324

psycopg-binary==3.2.1
python-dotenv==1.0.1
sqlparse==0.5.0
typing_extensions==4.12.2
whitenoise==6.7.0

We can use git status to check our changes, add the new files, and commit them. We can also

push to GitHub for an online backup of our code changes.

Shell

(.venv) $ git status
(.venv) $ git add -A
(.venv) $ git commit -m "New updates for Heroku deployment"
(.venv) $ git push -u origin main

Heroku Setup

Before 2022, Heroku had a generous free tier, but unfortunately, that is not the case anymore. It

costs a company real money to spin up virtual servers on your behalf, and as a result, few hosting

companies offer a free tier anymore.

Heroku pricing230 involves multiple tiers of features and bills per hour with a maximummonthly

limit. The deployment setup we will implement here costs $12/month if left on all the time, but

if you are cost-conscious and deploying for purely educational purposes, there is no reason to

leave your website “live” all the time. You can deploy the site, share it, and then take it down after

a few days and the total cost should only be $1-$2.

Sign up for aHeroku account on theirwebsite. Fill in the registration form and await an email with

a link to confirm your account. This will take you to the password setup page. Once configured,

you will be directed to the dashboard section of the site. Heroku now requires enrolling in

multi-factor authentication (MFA), which can be done with SalesForce or a tool like Google

Authenticator. Heroku now requires adding a credit card for account verification and payment.

Once you are signed up, it is time to install Heroku’s Command Line Interface (CLI) so we can

deploy from the command line. Currently, we are operating within a local virtual environment

230https://www.heroku.com/pricing

https://www.heroku.com/pricing
https://www.heroku.com/pricing

Chapter 16: Deployment 325

for the Newspaper project. We want to install Heroku globally so it is available for all projects. An

easy way to do this is by opening a new command line tab–“Control+t on Windows or Command+t

on a Mac–that is not currently operating in a virtual environment. Anything installed here will

be global.

On Windows, see the Heroku CLI page231 to install the 32-bit or 64-bit version correctly. On a

Mac, the package manager Homebrew232 is used for installation. If not already on your machine,

install Homebrew by copying and pasting the long command on the Homebrewwebsite into your

command line and hitting Return. It will look something like this:

Shell

$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/\
install/HEAD/install.sh)"

Next, install the Heroku CLI by copying and pasting the following into your command line and

hitting Return.

Shell

$ brew tap heroku/brew && brew install heroku

Once installation is complete, you can close the new command line tab and return to the initial

tab with the newspaper virtual environment active.

Type the command heroku login and press enter. Then press any key to open up a browser

window, where you can log in with your email, password, and two-factor authentication you just

set.

231https://devcenter.heroku.com/articles/heroku-cli#download-and-install
232https://brew.sh/

https://devcenter.heroku.com/articles/heroku-cli#download-and-install
https://brew.sh/
https://devcenter.heroku.com/articles/heroku-cli#download-and-install
https://brew.sh/

Chapter 16: Deployment 326

Shell

(.venv) > heroku login
heroku: Press any key to open up the browser to login or q to exit:
Opening browser to https://cli-auth.heroku.com/auth/cli/browser/....

Heroku Login

Once you are logged in we are ready to go!

Deploy with Heroku

There are two ways to interact with Heroku: via its CLI (Command Line Interface) or the website.

The CLI is much faster, which we will use here, but the website’s more visual nature is helpful if

you are new to Heroku.

The first step is to create a newHeroku app. from the command line with heroku create. Heroku

will create a random name for our app, in my case fathomless-hamlet-26076. Your name will be

Chapter 16: Deployment 327

different.

Shell

(.venv) $ heroku create
Creating app... done, � afternoon-wave-82807
https://afternoon-wave-82807-b672795cd97e.herokuapp.com/ |
https://git.heroku.com/afternoon-wave-82807.git

The heroku create command also creates a dedicated Git remote named heroku for our app. To

see this, type git remote -v.

Shell

(.venv) $ git remote -v
heroku https://git.heroku.com/afternoon-wave-82807.git (fetch)
heroku https://git.heroku.com/afternoon-wave-82807.git (push)

The next step is creating a PostgreSQL database on Heroku. There are various Postgres tiers233

available for different use cases. The five plan tiers are Essential, Standard, Premium, Private,

and Shield. The more you pay the less downtime is tolerated. For our use case, the lowest tier,

Essential, is more than adequate. Run the following command to create a new Essential Postgres

database for our project.

Shell

(.venv) $ heroku addons:create heroku-postgresql:essential-0
Creating heroku-postgresql:essential-0 on � afternoon-wave-82807...
~$0.007/hour (max $5/month)

Database should be available soon
postgresql-sinuous-77120 is being created in the background. The app will restart
when complete...

Use heroku addons:info postgresql-sinuous-77120 to check creation progress
Use heroku addons:docs heroku-postgresql to view documentation

The database might require a moment to provision, in which case you can wait a few minutes

and then run the command to “check creation progress.” Make sure the database name matches

your project.

233https://devcenter.heroku.com/articles/heroku-postgres-plans

https://devcenter.heroku.com/articles/heroku-postgres-plans
https://devcenter.heroku.com/articles/heroku-postgres-plans

Chapter 16: Deployment 328

Shell

(.venv) $ heroku addons:info postgresql-sinuous-77120
=== postgresql-sinuous-77120
Attachments: afternoon-wave-82807::DATABASE
Installed at: Tue Jul 02 2024 10:57:17 GMT-0400 (Eastern Daylight Time)
Max Price: $5/month
Owning app: afternoon-wave-82807
Plan: heroku-postgresql:essential-0
Price: ~$0.007/hour
State: created

If you run heroku config, it will show all configuration variables set on Heroku. At the moment,

that is just a DATABASE_URLwith the information to connect to the production Postgres database.

Shell

(.venv) $ heroku config
=== afternoon-wave-82807 Config Vars

DATABASE_URL: postgres://u1k...us-east-1.rds.amazonaws.com:5432/d11ac0v0inabta

Select your project on the Heroku website dashboard and click “Settings” in the navigation bar.

Under “Config Vars” you can see that the DATABASE_URL has been set.

Chapter 16: Deployment 329

Heroku Dashboard Configs

There are two other items in our local .env file, DEBUG and SECRET_KEY. We need to manually set

both on Heroku, either in the web interface or the command line. First up is DEBUG which should

be False.

Shell

(.venv) $ heroku config:set DEBUG=False
Setting DEBUG and restarting � afternoon-wave-82807... done, v6
DEBUG: False

Next is the SECRET_KEY. Make sure to wrap it in quotations, "", if you do so via the command line.

Chapter 16: Deployment 330

Shell

(.venv) $ heroku config:set SECRET_KEY="SECRET_KEY=imDnfLXy-8Y-YozfJmP2Rw_81YA_qx1X
Kl5FeY0mXyY"

Setting SECRET_KEY and restarting � afternoon-wave-82807... done, v7
SECRET_KEY: SECRET_KEY=imDnfLXy-8Y-YozfJmP2Rw_81YA_qx1XKl5FeY0mXyY

It’s a good idea to double-check that the production environment variables are properly set. From

the command line that means using the heroku config command.

Shell

(.venv) $ heroku config
=== afternoon-wave-82807 Config Vars

DATABASE_URL: postgres://u1k...us-east-1.rds.amazonaws.com:5432/d11ac0v0inabta
DEBUG: False
SECRET_KEY: SECRET_KEY=imDnfLXy-8Y-YozfJmP2Rw_81YA_qx1XKl5FeY0mXyY

You can also look at the web dashboard.

Chapter 16: Deployment 331

Heroku Dashboard Updated Configs

Now it is time to push our code up to Heroku with the command, git push heroku main. If we

had just typed git push origin main the code would have been pushed to GitHub, not Heroku.

Adding heroku to the command sends the code to Heroku.

Chapter 16: Deployment 332

Shell

(.venv) $ git push heroku main
Enumerating objects: 339, done.
Counting objects: 100% (339/339), done.
Delta compression using up to 10 threads
Compressing objects: 100% (333/333), done.
Writing objects: 100% (339/339), 798.15 KiB | 14.25 MiB/s, done.
Total 339 (delta 39), reused 0 (delta 0), pack-reused 0 (from 0)
remote: Resolving deltas: 100% (39/39), done.
remote: Updated 569 paths from 2ebafa9
remote: Compressing source files... done.
remote: Building source:
remote:
remote: -----> Building on the Heroku-22 stack
...
remote: https://afternoon-wave-82807-b672795cd97e.herokuapp.com/

deployed to Heroku
remote:
remote: Verifying deploy... done.
To https://git.heroku.com/afternoon-wave-82807.git
* [new branch] main -> main

This command generates a lot of output from Heroku and might take a while the first time. We

are pushing the code to Heroku, and it is rebuilding a production version of our Django project

on its servers. You’ll see that it installs each item from our requirements.txt file, among other

actions.

The last step is starting a Dyno234, Heroku’s term for our app’s lightweight container. We need at

least one to be running to make our website live. If we start to see a spike in traffic, we could add

more dynos to our project, and Heroku will handle all the infrastructure. For a small project like

this, I recommend the Basic Dyno235, which is $0.01 per hour with a maximum of $7 per month.

We will spin up one dyno using the Heroku CLI, but dynos can also be managed via the web

interface. The general syntax for the CLI is to start with heroku, ps is a command that prefixes

many commands affecting dynos, ps:scale is used to increase the number of dynos running a

process. Therefore, the command below tells Heroku to run one dyno for our website.

234https://www.heroku.com/dynos
235https://www.heroku.com/pricing#containers

https://www.heroku.com/dynos
https://www.heroku.com/pricing#containers
https://www.heroku.com/dynos
https://www.heroku.com/pricing#containers

Chapter 16: Deployment 333

Shell

(.venv) $ heroku ps:scale web=1
Scaling dynos... done, now running web at 1:Basic

The total cost for our project–if we let it run all the time–is $12 per month: $5/month for the

Postgres database and $7/month for the Dyno. Heroku bills per hour so you can always deploy

the website and take it down after a few days, which should cost only cents.

We’re done! The last step is to confirm our app is live and online. If you use the command heroku

open, your web browser will open a new tab with the URL of your app:

Shell

(.venv) $ heroku open

Production Homepage

The Newspaper website is live, but you’ll quickly see some problems if you try it out. For one

thing, there are no articles or comments! That’s becausewe still need to configure the production

PosgreSQL database running on Heroku. Let’s do that now. To run Django commands on Heroku

instead of locally, we use the prefix heroku run. So to migrate our database with initial settings,

we run the following command:

Chapter 16: Deployment 334

Shell

(.venv) $ heroku run python manage.py migrate
Running python manage.py migrate on � afternoon-wave-82807... up, run.2790 (Basic)
Operations to perform:
Apply all migrations: accounts, admin, articles, auth, contenttypes, sessions

Running migrations:
Applying contenttypes.0001_initial... OK
Applying contenttypes.0002_remove_content_type_name... OK
Applying auth.0001_initial... OK
Applying auth.0002_alter_permission_name_max_length... OK
Applying auth.0003_alter_user_email_max_length... OK
Applying auth.0004_alter_user_username_opts... OK
Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK
Applying auth.0007_alter_validators_add_error_messages... OK
Applying auth.0008_alter_user_username_max_length... OK
Applying auth.0009_alter_user_last_name_max_length... OK
Applying auth.0010_alter_group_name_max_length... OK
Applying auth.0011_update_proxy_permissions... OK
Applying auth.0012_alter_user_first_name_max_length... OK
Applying accounts.0001_initial... OK
Applying admin.0001_initial... OK
Applying admin.0002_logentry_remove_auto_add... OK
Applying admin.0003_logentry_add_action_flag_choices... OK
Applying articles.0001_initial... OK
Applying articles.0002_comment... OK
Applying sessions.0001_initial... OK

Now, create a superuser account to access the admin.

Chapter 16: Deployment 335

Shell

(.venv) $ heroku run python manage.py createsuperuser
Running python manage.py createsuperuser on � afternoon-wave-82807... up, run.7422
(Basic)

Username: wsv
Email address: will@learndjango.com
Password:
Password (again):
Superuser created successfully.

Navigate to the admin section of your deployed website, log in with your superuser credentials,

and add some articles and comments.

Production Admin Dashboard

They will then be displayed on the live website. You can also create user accounts and confirm

that the user authentication flow works correctly by resetting your password.

For future updates to the production website, the pattern is as follows:

• make local code changes and save them with Git

• use git push origin main to deploy them to GitHub

• use git push heroku main to push the code to Heroku

Chapter 16: Deployment 336

If you want to remove a hosted website, log into your Heroku dashboard236 and click on the app

name. Click on the Settings link in the navigation bar at the top, then scroll down to the bottom

of the page under Delete App and click the “Delete App…” button. You will be asked to type in

your full app name one more time to confirm that you want to permanently delete it.

Heroku Delete App

Another tip is that you can type Ctrl + d to exit the Heroku CLI at any time.

Additional Security Steps

There is an almost infinite list of additional security procedures to secure a production website.

Our production checklist covers the basics, but there are more if you want to take the additional

steps.

First, update ALLOWED_HOSTS and CSRF_TRUSTED_ORIGINS to use the exact production URL for

your project.

Next, you would run Django’s management command, which runs several automated checks237

around deployment. To run that command you would prefix heroku run so it would be heroku

236https://dashboard.heroku.com/apps
237https://docs.djangoproject.com/en/5.0/howto/deployment/checklist/#run-manage-py-check-deploy

https://dashboard.heroku.com/apps
https://docs.djangoproject.com/en/5.0/howto/deployment/checklist/#run-manage-py-check-deploy
https://dashboard.heroku.com/apps
https://docs.djangoproject.com/en/5.0/howto/deployment/checklist/#run-manage-py-check-deploy

Chapter 16: Deployment 337

run python manage.py check --deploy. You now know how to reference the Django docs and

update your local and production environment variables to make them pass.

Conclusion

We just covered a lot of new material, so you will likely feel overwhelmed. That’s normal. There

are many steps involved in configuring a website for proper deployment, and the good news is

that this same list of production settings will hold true for almost every Django project. Don’t

worry about memorizing all the steps; use the deployment checklist!

The other big stumbling block for newcomers is becoming comfortable with the difference

between local and production environments. You will likely forget to push code changes into

production and spend minutes or hours wondering why the change isn’t live on your site. Or

even worse, you’ll change your local SQLite database and expect them to magically appear in

the production PostgreSQL database. It’s part of the learning process, but Django makes it much

smoother than it otherwisewould be. You know enough to confidently deploy anyDjango project

online with a PaaS.

Chapter 17: Conclusion

Congratulations on finishingDjango for Beginners! Starting from scratch, we’ve built six different

web applications from scratch and covered Django’s major features: templates, views, URLs,

users, models, security, testing, and deployment. You now have the knowledge to build modern

websites with Django.

As with any new skill, practicing and applying what you’ve just learned is important. The CRUD

(Create-Read-Update-Delete) functionality in our Blog and Newspaper sites is commonplace

in many other web applications. For example, can you make a Todo List web application? An

Instagram or Facebook clone? You already have all the tools you need. When starting out, the

best approach is to build as many small projects as possible, incrementally add complexity, and

research new things.

Learning Resources

As you become more comfortable with Django and web development in general, you’ll find the

official Django documentation238 and source code239 increasingly valuable. I refer to both on an

almost daily basis. There is also the official Django forum240, a great albeit underutilized resource

for Django-specific questions.

To stay current with the latest Django news, the Django News Newsletter241 is a free weekly

newsletter with all the latest news, events, articles, tutorials, and projects. If you prefer the audio

format, Django Chat242 is a biweekly podcast I co-host with Django Fellow Carlton Gibson, where

we interview leading developers and provide deep dives on various Django topics.

238https://www.djangoproject.com
239https://github.com/django/django
240https://forum.djangoproject.com
241https://django-news.com
242https://djangochat.com

https://www.djangoproject.com/
https://github.com/django/django
https://forum.djangoproject.com/
https://django-news.com/
https://djangochat.com/
https://www.djangoproject.com/
https://github.com/django/django
https://forum.djangoproject.com/
https://django-news.com/
https://djangochat.com/

Chapter 17: Conclusion 339

If you want an all-in-one source of free tutorials and additional courses that cover APIs, Docker,

testing, and other topics in more depth please check out LearnDjango.com243, a comprehensive

learning website I run focused exclusively on Django.

3rd Party Packages

As we’ve seen in this book, third-party packages are a vital part of the Django ecosystem,

especially regarding deployment or improvements around user registration. It’s common for a

professional Django website to rely on dozens of such packages.

However, a word of caution is in order: don’t mindlessly install and use third-party packages be-

cause it saves a small amount of time. Every additional package introduces another dependency,

another risk that its maintainer won’t fix every bug or keep up to date with the latest version of

Django. Take the time to understand what it is doing.

If you’d like to viewmore packages, the Django Packages244 website is a comprehensive resource

of over 4,000 available third-party packages. A more curated option, the awesome-django245

repo, which I run with the current maintainer of Django Packages, is worth a look. And if you

need help starting a new project quickly, I’ve long maintained a free starter project, DjangoX246,

that comes with the latest version of Django, built-in user authentication, andmore to jumpstart

any new projects.

Python Books

Django is, ultimately, just Python, so if your Python skills could improve, I recommend Eric

Matthes’s Python Crash Course247. For intermediate to advanced developers, Fluent Python248

and Effective Python249 are worthy of additional study.

243https://learndjango.com
244https://djangopackages.org
245https://github.com/wsvincent/awesome-django
246https://github.com/wsvincent/djangox
247http://amzn.to/2okggMH
248http://amzn.to/2ovfgsR
249http://amzn.to/2nCqivT

https://learndjango.com/
https://djangopackages.org/
https://github.com/wsvincent/awesome-django
https://github.com/wsvincent/djangox
http://amzn.to/2okggMH
http://amzn.to/2ovfgsR
http://amzn.to/2nCqivT
https://learndjango.com/
https://djangopackages.org/
https://github.com/wsvincent/awesome-django
https://github.com/wsvincent/djangox
http://amzn.to/2okggMH
http://amzn.to/2ovfgsR
http://amzn.to/2nCqivT

Chapter 17: Conclusion 340

Feedback

If you purchased this book on Amazon, please leave an honest review. Your review will have an

enormous impact on book sales and help me continue to teach Django full-time.

Finally, I’d love to hear your thoughts about the book. It is a constant work in progress, and the

detailed feedback I receive from readers helps me continue to improve it. I try to respond to

every email at will@learndjango.com.

Thank you for reading the book. Good luck on your journey with Django!

	Table of Contents
	Foreword
	Chapter 0: Introduction
	Why Learn Django?
	Prerequisites
	What's New in Django 5
	Book Structure
	Book Layout
	Advice on Getting Stuck
	Community
	Conclusion

	Chapter 1: Initial Set Up
	The Command Line
	Shell Commands
	Install Python 3 on Windows
	Install Python 3 on Mac
	Python Interactive Mode
	Virtual Environments
	PyPI (Python Package Index)
	Install Django
	First Django Project
	The Development Server
	Text Editors
	VSCode Configurations
	Install Git
	Conclusion

	Chapter 2: Hello, World Website
	How the Internet Works
	How Web Frameworks Work
	Django Architecture
	Model-View-Controller vs Model-View-Template
	Initial Set Up
	Migrations
	Create An App
	Your First View
	URL Dispatcher
	Git
	Conclusion

	Chapter 3: Personal Website
	Initial Set Up
	Homepage
	Function-Based View About Page
	Templates
	URL Dispatcher
	The Django Template Language
	Template Context
	Tests
	Git and GitHub
	Conclusion

	Chapter 4: Company Website
	Initial Set Up
	Project-Level Templates
	Function-Based View and URL
	Template Context, Tags, and Filters
	Class-Based Views and Generic Class-Based Views
	TemplateView
	get_context_data()
	Template Inheritance
	Named URLs
	Tests
	Git and GitHub
	Conclusion

	Chapter 5: Message Board Website
	Initial Set Up
	Databases
	Django's ORM
	Database Model
	Activating Models
	Django Admin
	Function-Based View
	Templates and URLs
	ListView
	Initial Commit
	Tests
	GitHub
	Conclusion

	Chapter 6: Blog Website
	Initial Set Up
	Blog Post Models
	Primary Keys and Foreign Keys
	Admin
	Views
	URLs
	Templates
	Static Files
	Individual Blog Pages
	get_absolute_url()
	Tests
	Git
	Conclusion

	Chapter 7: Forms
	ListView and DetailView
	Mixins
	CreateView
	UpdateView
	DeleteView
	Tests
	Conclusion

	Chapter 8: User Accounts
	Log In
	Updated Homepage
	Log Out Link
	Sign Up
	Sign Up Link
	GitHub
	Conclusion

	Chapter 9: Newspaper Project
	Initial Set Up
	Git
	User Profile vs Custom User Model
	AbstractUser
	Forms
	Superuser
	Tests
	Git
	Conclusion

	Chapter 10: User Authentication
	Templates
	URLs
	Admin
	Tests
	Git
	Conclusion

	Chapter 11: Bootstrap
	Pages App
	Tests
	Testing Philosophy
	Bootstrap
	Signup Form
	Git and requirements.txt
	Conclusion

	Chapter 12: Password Change and Reset
	Password Change
	Customizing Password Change
	Password Reset
	Custom Templates
	Try It Out
	Git
	Conclusion

	Chapter 13: Articles App
	Articles App
	URLs and Views
	Detail/Edit/Delete
	Create Page
	Additional Links
	Git
	Conclusion

	Chapter 14: Permissions and Authorization
	Improved CreateView
	Authorizations
	Mixins
	LoginRequiredMixin
	UpdateView and DeleteView
	Template Logic
	Git
	Conclusion

	Chapter 15: Comments
	Model
	Admin
	Template
	Comment Form
	Comment View
	Comment Template
	Comment Post View
	New Comment Link
	Git
	Conclusion

	Chapter 16: Deployment
	Hosting Options
	Web Servers and WSGI/ASGI Servers
	Deployment Checklist
	Static Files
	Middleware
	Environment Variables
	DEBUG and ALLOWED_HOSTS
	SECRET_KEY, and CSRF_TRUSTED_ORIGINS
	DATABASES
	Gunicorn and Procfile
	requirements.txt
	Heroku Setup
	Deploy with Heroku
	Additional Security Steps
	Conclusion

	Chapter 17: Conclusion
	Learning Resources
	3rd Party Packages
	Python Books
	Feedback

